Here's a brief description of my research interests. (updated Aug. 25).
Click on the titles to display the paragraphs.
You can also download it in PDF format:
A short overview of modern interplays between Functional Analysis, Geometry, Probability, and Statistics.pdf
[1] | Jeff Cheeger and Tobias H Colding. On the structure of spaces with ricci curvature bounded below. i. Journal of Differential Geometry, 46(3):406--480, 1997. |
[2] | Stephanie Alexander, Vitali Kapovitch, and Anton Petrunin. Alexandrov geometry: foundations, volume 236. American Mathematical Society, 2024. |
[3] | Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l'Institut Henri Poincaré, 10(4):215--310, 1948. |
[4] | John W Tukey. Mathematics and the picturing of data. In Proceedings of the international congress of mathematicians, volume 2, pages 523--531. Vancouver, 1975. |
[5] | David L. Donoho and Miriam Gasko. Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics, 20(4):1803--1827, 1992. |
[6] | Charles Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: Contributions to the theory of statistics, volume 3, pages 197--207. University of California Press, 1956. |
[7] | Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. science, 313(5786):504--507, 2006. |
[8] | Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. Journal of the American Mathematical Society, 29(4):983--1049, 2016. |
[9] | Partha Niyogi and Mikhail Belkin. Geometric methods and manifold learning. Tutorial lecture at the Machine Learning Summer School (MLSS 2009), Chicago, June 2009. Event dates: June 1--11, 2009. Video available at VideoLectures.NET. |
[10] | Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. |
[11] | Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior of spaces of natural images. International journal of computer vision, 76(1):1--12, 2008. |
[12] | Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957. |
[13] | Mikhail Gromov. Metric structures for Riemannian and non-Riemannian spaces. Springer, 2007. |
[14] | Anatoly M Vershik. Random and universal metric spaces. Nonlinear Phenomena and complex systems, 10:199--228, 2004. |
[15] | Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6):1373--1396, 2003. |
[16] | Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear dimensionality reduction. science, 290(5500):2319--2323, 2000. |
[17] | Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic analysis, 21(1):5--30, 2006. |
[18] | Edward Nelson. Derivation of the Schrödinger equation from Newtonian mechanics. Physical review, 150(4):1079, 1966. |
[19] | Scott Armstrong, Tuomo Kuusi, and Jean-Christophe Mourrat. Quantitative stochastic homogenization and large-scale regularity, volume 352. Springer, 2019. |
[20] |
N. Barashkov and M. Gubinelli.
A variational method for Φ43.
Duke Mathematical Journal, 169(17):3339 -- 3415, 2020.
|
[21] | Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski. Paracontrolled distributions and singular pdes. In Forum of Mathematics, Pi, volume 3, page e6. Cambridge University Press, 2015. |
[22] | G Parisi and Wu Yongshi. Perturbation theory without gauge fixing, volume 7. July, 1980. |
[23] | Massimiliano Gubinelli, Martin Hairer, Tadahiro Oh, and Younes Zine. A simple construction of the sine-gordon model via stochastic quantization. Journal of the London Mathematical Society, 112(1):e70214, 2025. |
[24] | Alessio Figalli and Federico Glaudo. On the sharp stability of critical points of the Sobolev inequality. Archive for rational mechanics and analysis, 237(1):201--258, 2020. |
[25] | Melanie Rupflin. Sharp quantitative rigidity results for maps from S2 to S2 of general degree. arXiv preprint arXiv:2305.17045, 2023. |
[26] | Peter Miles Topping. Rigidity in the harmonic map heat flow. Journal of Differential Geometry, 45(3):593--610, 1997. |
[27] | Manuel del Pino. Bubbling blow-up in critical parabolic problems. In Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions: Cetraro, Italy 2016, pages 73--116. Springer, 2017. |
[28] | Peter M Topping. A rigidity estimate for maps from S2 to S2 via the harmonic map flow. Bulletin of the London Mathematical Society, 55(1):338--343, 2023. |
[29] | Haim Brezis and Jean-Michel Coron. Convergence of solutions of H-systems or how to blow bubbles. Archive for rational mechanics and analysis, 89(1):21--56, 1985. |
[30] | Richard Schoen and Karen Uhlenbeck. Boundary regularity and the dirichlet problem for harmonic maps. Journal of Differential Geometry, 18(2):253--268, 1983. |
[31] | Michael Struwe. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Mathematische zeitschrift, 187(4):511--517, 1984. |
[32] | Bin Deng, Liming Sun, and Jun-cheng Wei. Sharp quantitative estimates of Struwe’s decomposition. Duke Mathematical Journal, 174(1):159--228, 2025. |
[33] | Gabriele Bianchi and Henrik Egnell. A note on the Sobolev inequality. Journal of functional analysis, 100(1):18--24, 1991. |
[34] | Jean Dolbeault, Maria Esteban, Alessio Figalli, Rupert Frank, and Michael Loss. Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence. Cambridge Journal of Mathematics, 13:359--430, 01 2025. |
[35] |
Lorenzo Brasco, Guido De Philippis, and Bozhidar Velichkov.
Faber–Krahn inequalities in sharp quantitative form.
Duke Mathematical Journal, 164(9):1777 -- 1831, 2015.
|
[36] | Michael Aizenman and Hugo Duminil-Copin. Marginal triviality of the scaling limits of critical 4D Ising and φ44 models. Annals of Mathematics, 194(1):163--235, 2021. |
[37] | Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. The Annals of Probability, 43(1):339 -- 404, 2015. |
[38] | Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers, Nageswari Shanmugalingam, and Alexander Teplyaev. Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates. Calculus of Variations and Partial Differential Equations, 60(5):170, 2021. |
[39] | A. D. Barbour. Stein's method for diffusion approximations. Probab. Theory Related Fields, 84(3):297--322, 1990. |
[40] | Fabrice Baudoin. Bakry-Émery meet Villani. Journal of functional analysis, 273(7):2275--2291, 2017. |
[41] | Roland Bauerschmidt and Thierry Bodineau. Log-Sobolev inequality for the continuum sine-Gordon model. Communications on Pure and Applied Mathematics, 74(10):2064--2113, 2021. |
[42] | Roland Bauerschmidt and Benoit Dagallier. Log-Sobolev inequality for the φ24, and φ34 measures. Communications on Pure and Applied Mathematics, 2022. |
[43] | Dominique Bakry and Michel Émery. Diffusions hypercontractives. Séminaire de probabilités de Strasbourg, 19:177--206, 1985. |
[44] | Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion operators, volume 103. Springer, 2014. |
[45] | Victor-Emmanuel Brunel, Shin-ichi Ohta, and Jordan Serres. A generalization of Grünbaum's inequality in RCD(0,N)-spaces. arXiv preprint arXiv:2408.15030, 2024. |
[46] | Rabi Bhattacharya and Vic Patrangenaru. Large sample theory of intrinsic and extrinsic sample means on manifolds. The Annals of Statistics, 31(1):1--29, 2003. |
[47] | Rabi Bhattacharya and Vic Patrangenaru. Large sample theory of intrinsic and extrinsic sample means on manifolds—II. The Annals of Statistics, 33(3):1225 -- 1259, 2005. |
[48] | Victor-Emmanuel Brunel and Jordan Serres. Finite sample bounds for barycenter estimation in geodesic spaces. arXiv preprint arXiv:2502.14069, 2025. |
[49] | Victor-Emmanuel Brunel and Jordan Serres. Concentration of empirical barycenters in metric spaces. In Proceedings of The 35th International Conference on Algorithmic Learning Theory, volume 237 of Proceedings of Machine Learning Research, pages 337--361. PMLR, 25--28 Feb 2024. |
[50] | Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds for Markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 110--122. IEEE, 2022. |
[51] | Thomas A. Courtade and Max Fathi. Stability of the Bakry-Émery theorem on Rn. J. Funct. Anal., 279(2):108523, 28, 2020. |
[52] | Francesco Nobili. An overview of the stability of Sobolev inequalities on Riemannian manifolds with Ricci lower bounds , 2024. cvgmt preprint. |
[53] | Jean Dolbeault. Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. Milan Journal of Mathematics, 89(2):355--386, 2021. |
[54] | Nicola Fusco, Francesco Maggi, and Aldo Pratelli. The sharp quantitative isoperimetric inequality. Annals of mathematics, pages 941--980, 2008. |
[55] | Alessio Figalli, Francesco Maggi, and Aldo Pratelli. A mass transportation approach to quantitative isoperimetric inequalities. Inventiones mathematicae, 182(1):167--211, 2010. |
[56] | Xavier Cabré, Xavier Ros-Oton, and Joaquim Serra. Sharp isoperimetric inequalities via the ABP method. Journal of the European Mathematical Society (EMS Publishing), 18(12), 2016. |
[57] | Marco Cicalese and Gian Paolo Leonardi. A selection principle for the sharp quantitative isoperimetric inequality. Archive for Rational Mechanics and Analysis, 206(2):617--643, 2012. |
[58] | Patrick Cattiaux and Arnaud Guillin. A journey with the integrated γ2 criterion and its weak forms. In Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2020-2022, pages 167--208. Springer, 2023. |
[59] | Alessio Figalli, Peter Van-Hintum, and Marius Tiba. Sharp quantitative stability of the Brunn-Minkowski inequality. arXiv preprint arXiv:2310.20643, 2023. |
[60] | Fabio Cavalletti and Andrea Mondino. A review of Lorentzian synthetic theory of timelike Ricci curvature bounds. General Relativity and Gravitation, 54(11):137, 2022. |
[61] | Fabio Cavalletti, Andrea Mondino, and Daniele Semola. Quantitative Obata’s theorem. Analysis & PDE, 16(6):1389--1431, 2023. |
[62] | Lorenzo Brasco, Guido De Philippis, and Berardo Ruffini. Spectral optimization for the Stekloff--Laplacian: the stability issue. Journal of Functional Analysis, 262(11):4675--4710, 2012. |
[63] | Jordan Serres. Isoperimetric and geometric inequalities in quantitative form: Stein's method approach. arXiv preprint arXiv:2410.20844, 2024. |
[64] | Max Fathi, Ivan Gentil, and Jordan Serres. Stability estimates for the sharp spectral gap bound under a curvature-dimension condition. Annales de l'Institut Fourier, 74(6):2425--2459, 2024. |
[65] | Gerard Besson and Sylvestre Gallot. On scalar and Ricci curvatures. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 17:046, 2021. |
[66] | Shin-ichi Ohta. On the measure contraction property of metric measure spaces. Comment. Math. Helv., 82(4):805--828, 2007. |
[67] | Jérôme Bertrand, Christian Ketterer, Ilaria Mondello, and Thomas Richard. Stratified spaces and synthetic Ricci curvature bounds. In Annales de l'Institut Fourier, volume 71, pages 123--173, 2021. |
[68] | Shouhei Honda. Bakry-Émery conditions on almost smooth metric measure spaces. Analysis and Geometry in Metric Spaces, 6(1):129--145, 2018. |
[69] | Bang-Xian Han, Deng-Yu Liu, and Zhuo-Nan Zhu. Barycenter curvature-dimension condition for extended metric measure spaces. Indagationes Mathematicae, 2025. |
[70] | Alessio Figalli. Stability in geometric and functional inequalities. In European congress of mathematics, pages 585--599. Citeseer, 2013. |
[71] | Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet forms and symmetric Markov processes, volume 19. Walter de Gruyter, 2011. |
[72] | Nicola Fusco. The quantitative isoperimetric inequality and related topics. Bulletin of Mathematical Sciences, 5:517--607, 2015. |
[73] | Martin Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269--504, 2014. |
[74] | Leo P Kadanoff. Scaling laws for ising models near t c. Physics Physique Fizika, 2(6):263, 1966. |
[75] | Bo'az Klartag and Eli Putterman. Spectral monotonicity under Gaussian convolution. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6, 32(5):939--967, 2023. |
[76] | Michel Ledoux, Ivan Nourdin, and Giovanni Peccati. Stein's method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal., 25(1):256--306, 2015. |
[77] | John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics, pages 903--991, 2009. |
[78] | Felix Otto and Cédric Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. Journal of Functional Analysis, 173(2):361--400, 2000. |
[79] | Joseph Polchinski. Renormalization and effective Lagrangians. Nuclear Physics B, 231(2):269--295, 1984. |
[80] | Nathan Ross. Fundamentals of Stein's method. Probab. Surv., 8:210--293, 2011. |
[81] | C Roberto and B Zegarlinski. Hypercontractivity for markov semi-groups. Journal of Functional Analysis, 282(12):109439, 2022. |
[82] | Jordan Serres. Around stability for functional inequalities. PhD thesis, Université Paul Sabatier-Toulouse III, 2022. |
[83] | Jordan Serres. Stability of higher order eigenvalues in dimension one. Stochastic Processes and their Applications, 155:459--484, 2023. |
[84] | Jordan Serres. Stability of the Poincaré constant. Bernoulli, 29(2):1297--1320, 2023. |
[85] | Jordan Serres. Behavior of the poincaré constant along the polchinski renormalization flow. Communications in Contemporary Mathematics, 26(07):2350035, 2024. |
[86] | Charles Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability , Vol. II: Probability theory, pages 583--602, 1972. |
[87] | Karl-Theodor Sturm. On the geometry of metric measure spaces. I. Acta Mathematica, 196(1):65 -- 131, 2006. |
[88] | Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta Mathematica, 196(1):133 -- 177, 2006. |
[89] | Karl-Theodor Sturm. Probability measures on metric spaces of nonpositive. Heat kernels and analysis on manifolds, graphs, and metric spaces, 338:357, 2003. |
[90] | Kohei Suzuki. Convergence of Brownian motions on metric measure spaces under Riemannian Curvature–Dimension conditions. Electronic Journal of Probability, 24(none):1 -- 36, 2019. |
[91] | David Tewodrose. Some functional inequalities and spectral properties of metric measure spaces with curvature bounded below. PhD thesis, Université Paris sciences et lettres; Scuola normale superiore (Pise, Italie), 2018. |
[92] | Kenneth G Wilson. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Physical review B, 4(9):3174, 1971. |
email: serres AT lpsm.paris