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Chapter 1

Introduction

1.1 Statistique en grande dimension

1.1.1 Exemple introductif

Au cours des derniéres années, ’essor des données de grande dimension a confronté les statistiques et le
machine learning & un défi majeur : le fléau de la dimension.

Ce terme désigne le phénomene selon lequel la plupart des algorithmes classiques voient leur vitesse de
convergence devenir impraticable lorsque la dimension des données augmente fortement, comme c’est le cas,
par exemple, pour les images, représentées par des vecteurs comportant plusieurs millions de composantes.

Prenons 'exemple jouet de classification suivant! : on prend la base de données d’images Fashion-MNIST,
composée de 70 000 images de 28 x 28 = 784 pixels avec des niveaux de gris allant de 0 & 255 (soit 8 bits).
Il s’agit donc de vecteurs éléments de I’ensemble

[[07 255]]784 C R7847

qui peut étre considéré comme un espace de grande dimension, bien que dans la pratique les images de plus
haute résolution se représentent plutot comme des vecteurs de dimension de l'ordre de plusieurs millions.

Figure 1.1: Fashion-MNIST

Parmi ces images, il y a 10 classes différentes de vétements (t-shirt, pantalon, etc.), et le but est de
classifier ces images, c’est-a-dire d’assigner & chacune d’entre elles son label (le numéro de I'item auquel elle
appartient). Pour cela, parmi les 70 000 images, on dispose de 60 000 qui sont déja étiquetées (par des
humains), et le but est d’apprendre & partir de cet ensemble d’entrainement afin de généraliser correctement,
c’est-a~dire de prédire le label des images qui n’avaient pas été étiquetées.

IMerci & David Tewodrose & qui j’emprunte cet exemple !
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Un algorithme réalisant cette tache est le suivant. On fixe N, k € N, puis on divise I’ensemble d’entrainement
en N sous-ensembles (les batches) By,...,Bn. Etant donnée une image € R™*, on calcule pour chaque
batch B;, i = 1,..., N, ses k plus proches voisins dans le batch B;, c’est-a-dire les k points dans B; qui
sont les plus proches de x pour la distance euclidienne. On regarde alors, pour chacun de ces k plus proches
voisins, quel est son label, c’est-a-dire sa classe de vétement. Pour ce batch B; donné, on attribue ensuite a
z le label majoritaire parmi les k plus proches voisins dans B;. On obtient donc N labels, un pour chaque
batch, et on attribue finalement & x le label majoritaire parmi ceux-ci.

Le probleme de la grande dimension surgit justement du calcul des distances euclidiennes dans R” pour
D grand (ici D = 784). En effet, lorsque la dimension est grande, “tous les points se retrouvent éloignés”.
Dit de facon plus rigoureuse, si on considere I’hypercube [0,1]” et qu’on le divise en petits hypercubes de
c6té 10™™, alors on se retrouve avec 10™P hypercubes, soit un nombre gigantesque des lors que D est grand.
Par exemple, ici pour m = 1 et D = 784, on obtient 107 hypercubes, soit beaucoup, beaucoup plus que le
nombre de données 7 x 10%. Cela signifie que deux données différentes se trouveront quasi systématiquement
dans des hypercubes différents et seront donc toujours éloignées. Ce phénomene tres important est connu
sous le nom de malédiction de la dimension.

1.1.2 Le phénomeéne de concentration de la mesure

En grande dimension, on ne voit que des événements typiques : c’est ce que ’on nomme la concentration de
la mesure.

La loi des grands nombres est une instanciation de ce phénomene. Prenons un moment pour l'illustrer.
Sil’on a une suite infinie de variables aléatoires X1, Xa, ..., Xp,... qui sont iid et intégrables (E[|X1]] < o),
alors la loi des grands nombres affirme que la moyenne empirique converge presque stirement vers ’espérance,
c’est-a~dire la moyenne théorique :

n

1 X; — E[X;] presque strement.

Cela signifie que lorsque le nombre de données augmente, c’est-a-dire quand n augmente, le nombre de
possibilités augmente?, mais le nombre de possibilités que I’on peut effectivement observer diminue, jusqu’a
ne plus pouvoir observer qu’un seul événement a la limite oi1 ’'on a acces & la suite infinie des données®. Dans
le cas ou ce que 'on observe est la moyenne empirique, I'unique valeur effectivement observable a la limite
est la moyenne théorique E[X7], comme l'affirme la loi des grands nombres.

Dit autrement, lorsque la taille de I’échantillon augmente, les valeurs des observables effectives se concen-
trent autour d’un point. C’est exactement ce que I’on nomme le phénomene de concentration de la mesure,
et cela dépasse largement la loi des grands nombres.

En effet, de fagon générale, une observable est une fonction K,-Lipschitz des données : f,(X1,...,X,).
Il s’agit donc d’une fonction?

fniE" =R
vérifiant
n
i=1
olt E dénote I'ensemble olt prennent leurs valeurs les variables aléatoires, et ||-|| une norme sur cet ensemble®.

Notez bien que la constante K, est autorisée a dépendre de n.

Exercice : La fonction moyenne empirique

1 n
(T1,.. ., Tp) > — E x;
n
=1

2et augmente exponentiellement, par exemple pour des Bernoulli, le nombre de possibilités double & chaque nouvelle donnée
3ce qui est évidemment impossible mais peut étre concu comme une vue de esprit

4en réalité une suite de fonctions, mais pour alléger la notation, on n’écrit pas toujours ’indice n

5qui sera donc souvent R% muni de la norme euclidienne
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est-elle Lipschitz 7 Si oui, quelle est sa constante ?

La concentration de la mesure est alors la propriété que l'observable f(Xi,...,X,) se concentre autour
de sa moyenne avec une certaine vitesse « : (0,00) — (0, 00), au sens ou pour tout € > 0,

IP’(]f(Xl,...7Xn) —E[f(X1, ..., X,)]| > g) < a(%)

Exercice : Dans le cas ol les X; sont iid & valeurs dans [a,b] C R et que l'observable est la moyenne
empirique, déterminer la fonction de concentration « : (0,00) — (0,00) correspondante.

Que signifie ’hypothese que l'observable soit Lipschitz ? Cela signifie que si 'on ne modifie que peu
de données, alors la valeur de la fonction ne change que peu. Autrement dit, il faut modifier beaucoup de
données pour que la fonction soit modifiée significativement. C’est une propriété de robustesse.

La morale & retenir peut étre formulée ainsi : en grande dimension (c¢’est-a-dire n grand), les observables
robustes ne voient que les événements typiques. Inversement, les événements plus fins, non typiques®, ne sont
pas robustes. Seules les structures robustes sont statistiques.

1.2 La géométrie en analyse des données

L’apparition de la géométrie en science des données provient & la fois de la pratique et de la théorie.

Du co6té pratique, cela vient du fait que, malgré que la malédiction de la dimension semble prohiber toute
forme de statistique en grande dimension, 1'utilisation de certains outils statistiques fonctionne malgré tout,
alors que 'on s’attendrait & ce qu’ils ne fonctionnent pas & cause de la grande dimension.

Du co6té théorique, I'existence d’une géométrie intrinseque aux données constitue une bonne hypothese
de travail pour démontrer, de fagon rigoureuse, des résultats non triviaux et utilisables en pratique dans le
cadre de la grande dimension. Cette hypothese justifie également a posteriori 'observation selon laquelle, en
pratique, de nombreux algorithmes fonctionnent malgré la grande dimension.

De facon trés vague, cela peut étre résumé par ce que ’on appelle [’hypothése de la variété.

Hypothese. (hypothése de la variété) Les données de grande dimension X1, ..., X, € RP, D > 1, possédent
une géométrie intrinséque, de dimension intrinseque d < D.

Un des objectifs de ce cours sera de comprendre plus précisément ce que signifie cette hypothese, c’est-
a-dire ce que l'on entend par ”géométrie intrinseque”, mais également quelles sont ses implications, tant du
point de vue pratique que théorique, en mettant davantage I’accent sur les idées conceptuelles plutot que sur
les aspects techniques.

1.2.1 Géométrie des données
Premier cas, Figure 1.2 : on mesure la configuration d’un bras robotique avec 3 articulations. Chaque articu-

lation est caractérisée par son orientation, c’est-a-dire son angle, et un angle dans ’espace est naturellement
vu comme un vecteur sur la sphere S2. Par conséquent, ici les données sont & valeurs dans la variété produit

S?xS?xS?Cc R xR xR =R

Spar exemple I’événement ol tous les X; sont égaux, correspondant & I’observable 1x,=..=x,



Figure 1.2: Bras robotique
Données dans S? x S? x §?
(image de M. Belkin)

CHAPTER 1. INTRODUCTION

Un second cas, Figure 1.3, est constitué d’un ensemble de photos d’un méme visage 3D d’une statue,
prises sous différents angles. Alors que I'image est naturellement représentée comme un vecteur de dimension
égale au nombre de pixels (donc trés grande dimension), le fait que les seuls degrés de liberté soient 'angle
de prise de vue induit de facto une structure de dimension intrinseque beaucoup plus petite.

A

©

In
® H fo

@"-.

© - .
8
a PR
c /1
2 :
© .
o -,
-
o I
@
—

©

®

®

. . .
] . .
~ \ l
. ’ A

I . !U
<. 'G_)- .. .‘.'

'(D

n
..—1
—

]

d

Figure 1.3: Visage vu sous différents angles
Données de dimension intrinseque bien inférieure a la dimension ambiante

(image de [19])

N 2!

Lighting direction

Left-right pose

Un autre exemple célebre, voir [6, Section 2], montre que l’espace des patchs 3 x 3 d’une certaine collection
d’images, apres normalisation, possede la topologie d’une bouteille de Klein, voir Figure 1.4.
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Figure 1.4: Bouteille de Klein dans R?
(image de K. Polthier, in [6])

Dans les deux premiers cas, on voit que la structure géométrique interne aux données résulte de contraintes
physiques (I'articulation du bras, l’angle de la prise de photo). Il est donc attendu que ce phénomene soit
récurrent. Notez bien que I’hypothese de la variété dit deux choses : premierement, les données ont une
géométrie interne (c’est-a-dire qu’il est possible de donner du sens au fait que deux données X7, X soient
proches, indépendamment de la fagon dont on représente ces données), et deuxiémement, elles ont une
dimension intrinseque qui ne dépend pas de la dimension utilisée pour les collecter ou représenter, et qui est
souvent beaucoup plus petite.

D’un point de vue probabiliste, 'hypothese de la variété peut étre vue de facon heuristique” comme une
conséquence® du fait que les données possedent des corrélations internes. Cela signifie la chose suivante.
Soient

Xi,...,X, eRP

des données iid & valeurs dans R” avec D grand. Il s’ensuit que

1 %2 D
Xl = (Xl,Xla"'aXl )
Le nombre de coordonnées étant trés grand, on observe souvent des corrélations entre elles, donc les X7, ..., XP

seront des variables aléatoires réelles corrélées. On pourra alors écrire ces corrélations sous la forme
1 Dy _
as. o(Xy,...,X7)=0

pour une certaine fonction ¢ : RP? — R représentant les contraintes suivies par les coordonnées. Notez que
I’on parle de corrélations internes parce que ce sont les coordonnées des données dans la représentation que
I’on a qui sont corrélées, et non pas les données elles-mémes, que 1'on suppose iid.

Un exercice d’analyse multivariée de niveau licence permet d’affirmer que si ¢ est suffisamment réguliere,
alors la pré-image ¢~ 1(0) est une variété de dimension D — I, et donc les données sont supportées sur cette
variété de dimension intrinseque d = D — [ < D des lors que [ est suffisamment grand, ce qui correspond
exactement a 'hypothese de la variété.

Exercice : Quelles hypotheses doit-on rigoureusement supposer pour montrer que la pré-image ¢ ~1(0)
est effectivement une variété ? (indice : se rappeler du théoreme des fonctions implicites).

Parmi les premieres personnes & avoir étudié ’hypothese de la variété, Belkin et Niyogi (2003) 1’ont
introduite comme un modele permettant de pallier le fléau de la dimension. En effet, comme vu a la

"nous laissons les lecteurs comprendre pourquoi cela n’est pas totalement rigoureux

8et donc pas une hypothese !
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section 1.1.2, le fait que les données soient en grande dimension entraine quasi systématiquement qu’elles
sont éloignées les unes des autres, et par conséquent la taille de ’échantillon devrait dépendre de facon
exponentielle de la dimension pour obtenir des résultats statistiquement efficaces. Autrement dit, si I'on est
en dimension D, étant donné un seuil d’erreur € > 0, on devrait avoir des échantillons de 'ordre de

afin de pouvoir faire correctement des statistiques. Or, pour D ~ 10% et ¢ ~ 107!, cela donne des tailles
d’échantillons inconcevables.

L’hypothese de la variété, telle que présentée par Belkin et Niyogi, consiste donc, lorsque les données sont
de grande dimension, a les modéliser comme étant a valeurs dans une variété de plus basse dimension, a
laquelle on peut ajouter un bruit (voir Figures 1.6 et 1.5). Formulée de fagon statistique, cela revient a dire
que, étant donné X, ..., X, € RP on considére des modeles statistiques (Py)y oi1 chaque loi de probabilité
Py est supportée sur une sous-variété de dimension plus petite que D.

Hypothése. (hypothése de la variété : modéle statistique en grande dimension)
Les données proviennent d’un tirage sur une sous-variété, plus un bruit.

Points uniformes sur un tore avec bruit 0,5

Figure 1.5: Tore + bruit
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Points uniformes sur un tore avec bruit 0,1

Figure 1.6: Tore + bruit

L’hypothese de la variété a de nombreuses conséquences conceptuelles et interprétations. Pour illustrer
ces conséquences, prenons ’exemple de la classification d’images de chiens et de chats. L’hypothese de la
variété affirme que I’ensemble des photos de chats possede une structure géométrique intrinseque, et de méme
pour ’ensemble des photos de chiens. Le probleme de classification revient alors & étre capable de ”séparer”
ces deux sous-variétés de l'espace des images, qui sont entrelacées. Voir Figure 1.7.

1.0
0.0

-1.0

-2.9 2.0

-1.0

2.9 -4.0

Figure 1.7: Sous-variétés entrelacées
Probleme de classification
(image de C. Olah)

Comme mentionné précédemment, I’hypothese de la variété nait d’un aller-retour entre pratique et théorie.
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D’une part, la théorie statistique ”classique”, & cause du fléau de la dimension, prédit des convergences
extrémement lentes (voire inobservables), alors qu’en pratique, de nombreux algorithmes qui traitent des
données de grande dimension fonctionnent malgré tout en temps raisonnable. L’hypothese de la variété peut
alors étre vue comme une explication de ce phénomene, car les vitesses de convergence effectives dépendraient
de la dimension intrinseque, qui reste de taille raisonnable.

D’autre part, supposer que les données sont supportées sur une variété, donc utiliser le modele ”manifold
+ noise”, constitue un cadre théorique dans lequel on peut obtenir des résultats statistiques concordant avec
les résultats observés en pratique. Cela fournit un cadre théorique cohérent pour ’étude.

Ces deux aspects peuvent se résumer ainsi :

1. Apprendre la géométrie et la dimension intrinseques des données afin d’en tirer des informations statis-
tiques utiles ; ce sera le chapitre 3.

2. Supposer que 'on connait la géométrie des données, et établir sous quelles conditions géométriques une
théorie de ’estimation statistique ou de I’apprentissage est disponible ; ce sera le chapitre 4.

Concluons en mentionnant qu’apprendre la dimension intrinseque des données correspond aux algorithmes
de réduction de dimension. Dans notre cadre géométrique, il s’agira de méthodes de réduction de dimension
non linéaires.

En particulier, la réduction de dimension peut étre utilisée afin de rendre possibles des calculs qui seraient
autrement trop cotuteux, mais elle sert également comme un outil de statistique descriptive, c’est-a-dire qu’elle
permet de projeter les données en dimension 2 ou 3, en respectant d’une certaine fagon leur géométrie, et de
les rendre ainsi visualisables, de fagon analogue aux statistiques descriptives usuelles telles que les quantiles
ou les diagrammes en boite.

1.2.2 Géomeétrie de ’information

Un sujet tres riche et proche, bien que différent de la géométrie des données traitée dans ce cours, est la
géométrie de l'information. Bien qu’il ne sera pas question de géométrie de I'information dans ce cours, nous
esquissons ici, de facon tres grossiere, sa ”définition” afin d’en souligner les différences avec la géométrie des
données.

Etant donné X1,...,X, € RP, on considére un modele statistique (Py)geo avec © C R* un ouvert. La
) 9 ) q S
géométrie de I'information consiste & voir le parametre § comme un systéeme de coordonnées, et donc a voir
le modele (Py)geco comme une variété équipée d’une structure métrique®. Par exemple, la divergence de
€ quip q ple,
Kullback-Leibler induit une telle structure, et possede notamment de nombreux liens avec ’estimation par

maximum de vraisemblance.

On retiendra donc qu’en géométrie des données, on considere une géométrie sur les données elles-mémes
Xq,...,X,, tandis qu’en géométrie de l'information, on considere une géométrie sur le modele statistique
que 'on a choisi.

9définie & partir de information de Fisher, d’ot1 le nom ”géométrie de 'information”



Chapter 2
Qu’est-ce que la géométrie ?

Dans cette section, nous présentons quelques éléments de géométrie qui seront nécessaires pour la suite du
cours. Nous discutons les concepts et présentons les principaux outils techniques.

Le mot géométrie vient de "geo”, en référence a Gaia, la déesse grecque de la Terre, et de "métrie”,
signifiant ”mesure de”. Ainsi, au sens premier, la géométrie est la mesure de la Terre. Rien d’abstrait, rien
d’axiomatique, aucune quéte de démonstrations parfaitement rigoureuses, simplement la capacité de mesurer
le monde dans lequel nous vivons.

A premiere vue, le sens de la géométrie peut sembler avoir perdu ses racines, puisque les géometres
modernes étudient des sujets aussi abstraits que la topologie algébrique ou la géométrisation des variétés de
dimension 3 de Thurston. Cependant, la sphere S2 C R3, définie par 1’équation algébrique x2 + 32 4 22 =1,
est elleeméme une variété algébrique, modele de notre terre ronde. Et puisque notre espace semble étre
tridimensionnel, la géométrisation de Thurston n’est rien de moins que la classification de tous les espaces
possibles dans lesquels nous pourrions vivre; car, selon la relativité générale d’Einstein, 1’espace (ou plutot
lespace-temps) dépend de la matiere qu’il contient.

Ainsi, si nous convenons de ne pas interpréter ”geo”, la Terre, trop littéralement comme la planéte que
nous habitons, mais plus largement comme le monde dans lequel nous vivons, alors ” Géométrie” demeure le
terme parfait pour décrire notre objectif : mesurer le monde.

2.1 Géométrie Riemannienne

Dans sa these d’habilitation de 1854 [16], intitulée Uber die Hypothesen, welche der Geometrie zu Grunde
liegen (Sur les hypotheses qui servent de fondement a la géométrie), Bernhard Riemann, qui venait d’achever
sa these de doctorat sous la direction de Gauss, pose la question de ce qui définit la notion d’espace.

Pendant tres longtemps, la géométrie s’est attachée a I’étude des figures dans I’espace, et elle a procédé a
priori, comme dirait Kant, c’est-a-dire qu’elle partait d’un ensemble de postulats, principalement les axiomes
d’Euclide, et en déduisait, de maniere purement logique, des propriétés concernant les rapports de longueurs,
les angles ou le concours de droites.

Les philosophes, constatant que la vérité des résultats obtenus en géométrie, c’est-a-dire leur adéquation
avec le monde réel, dont la géométrie sert ultimement la compréhension par la mesure, dépendait de maniere
cruciale de la vérité des axiomes, ont commencé a examiner ces axiomes de plus pres. C’est précisément ici
que nous rencontrons Riemann, réfléchissant aux hypotheses qui constituent les fondements de la géométrie,
dans une dissertation mathématique que beaucoup aujourd’hui jugeraient plutot philosophique, notamment
parce qu’elle contient trés peu de formules mathématiques ; il s’agit essentiellement d’une quinzaine de pages
de texte ! Et 'une des premieres choses qui frappe le lecteur, et qui frappa Riemann lui-méme lorsqu’il
examina les axiomes, est qu’ils traitent des propriétés des figures contenues dans I'espace (droites, cercles,
etc.), mais non de l'espace lui-méme, qui les contient. Ne devrait-on pas pourtant attendre des fondements
de la géométrie qu’ils portent sur l’espace lui-méme, et qu’a partir de la on puisse déduire le comportement
des objets qu’il contient ?

13
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Pour Riemann, la notion d’espace coincide avec le concept de grandeur. Ce qui importe, c’est la maniére
dont cette grandeur est mesurée : son mode de détermination. La difficulté tient alors au fait que, méme
si 'on sait mesurer une longueur dans une direction donnée, cela ne détermine pas entierement le concept
lorsque la grandeur posséde plusieurs dimensions : il faut comprendre comment les mesures effectuées dans
différentes directions interagissent entre elles. Il résume cette idée de la maniere suivante :

1l en résultera qu’une grandeur de dimensions multiples est susceptible de diverses relations
métriques, et que [’espace n’est donc qu’un cas particulier d’une grandeur a trois dimensions.
1l s’ensuit nécessairement que les propositions de la géométrie ne peuvent étre déduites des con-
cepts généraux de grandeur, mais que les propriétés par lesquelles l'espace se distingue de toute
autre grandeur tridimensionnelle concevable ne peuvent étre tirées que de l’expérience. De la nait
le probléme de trouver les faits les plus simples par lesquels les relations métriques de ’espace
peuvent étre déterminées. |...]

— Bernhard Riemann, 1854

Il s’agit donc de déterminer les relations métriques de ’espace, c’est-a-dire la maniere dont les longueurs
se comportent les unes par rapport aux autres lorsqu’on les considere dans plusieurs directions différentes.
Considérons le cas ou le mode de mesure est continu, ce qui signifie que les résultats possibles sont des
nombres réels, et supposons que nous ayons affaire a une grandeur de dimension n, c’est-a-dire possédant
n directions indépendantes le long desquelles des mesures peuvent étre effectuées indépendamment. Enfin,
supposons que nous nous déplacions d’'un point A vers un point B, et qu’a l'issue de ce déplacement nous
ayons mesuré, le long de chacune de ces directions indépendantes, une ”longueur” dx;, i = 1, --- , n. Nous
demandons alors : quelle longueur ds doit-on attribuer au segment reliant le point A au point B 7

Puisque nous avons supposé la grandeur de dimension n, et puisque nous avons effectué des mesures dans
n directions indépendantes, nous devons nécessairement pouvoir exprimer ds comme une fonction des dz; ;
sinon, nous ne serions pas en dimension n mais au moins en dimension n + 1. La formule qui exprime ds en
fonction des dx; est ce que Riemann appelle les relations métriques de 'espace.

Si nous voulons que ces relations correspondent a la géométrie euclidienne — en particulier en dimension
2, nous sommes rapidement conduits au théoreme de Pythagore, et donc a la relation métrique quadratique
suivante :

ds®* = dxf + -+ da? (2.1.1)

Rappelons maintenant que 1'objectif de Riemann est d’examiner les fondements ; il ne peut donc pas
s’arréter au théoreme de Pythagore, déja bien compris et découlant directement des axiomes d’Euclide. La
question devient alors : quelles sont les relations métriques les plus générales que ’on puisse concevoir ? Bien
stir, on pourrait simplement affirmer qu’il existe une certaine fonction exprimant ds en fonction des dx;, mais
un tel niveau de généralité ne permet pas de saisir la notion d’espace que nous cherchons a décrire.

Il s’agit 1a d’un fait récurrent en mathématiques : il existe toujours un compromis entre la généralité
d’un énoncé, c’est-a-dire le nombre d’objets qu’il englobe, et son caractére informatif, c’est-a-dire la quantité
d’information qu’il fournit. Les deux cas extrémes consistent soit & étre tres imprécis tout en parlant de
beaucoup de choses (dire peu sur beaucoup), soit & étre trés précis tout en parlant de peu de choses (dire
beaucoup sur peu).

Dans le cas présent, nous voulons une forme tres générale pour les relations métriques de I'espace, mais
en méme temps nous souhaitons que cette forme demeure compatible avec une notion proche de celle que
nous nous faisons de I’espace. Ce que Riemann observe, c’est que la relation métrique précédente, issue du
théoreme de Pythagore, possede la propriété cruciale d’étre quadratique en les dzx;. Par conséquent, exprimer
une relation quadratique générale de la forme

n
ds® = Z 9ij dx; dx;
ij=1

peut étre vu comme ’extension la plus naturelle du théoreme de Pythagore, et constitue le fondement de ce
que 'on appelle aujourd’hui la géométrie riemannienne.’

17Des relations encore plus compliquées peuvent apparaitre lorsqu’on ne suppose plus que 1’élément linéaire puisse étre
représenté par la racine carrée d’une expression différentielle du second degré.” - Riemann, 1854. C’est précisément ce qui
donnera plus tard naissance a ce que 'on appelle aujourd’hui la géométrie finslérienne.
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Pour préciser les choses, nous concevrons ces éléments de longueur dx; comme étant tres petits, de sorte
que la formule exprimant ds en fonction des dx; ne soit valable qu’au sens infinitésimal. Afin de commencer
a formuler ces idées dans le langage des mathématiques modernes, nous ne considérerons plus ces éléments de
longueur comme des quantités infinitésimales, mais plutot comme des directions que ’on peut emprunter en
s’éloignant d’un point . Nous représentons ces directions par des vecteurs attachés au point x, et I’ensemble
de tous ces vecteurs forme ce que I'on appelle I’espace tangent en x.

Puisque nous sommes en dimension n, ’ensemble de tous les vecteurs possibles que ’on peut concevoir
est, en tant qu’espace vectoriel, isomorphe & R™.2

Si les dz; sont des vecteurs de dimension n attachés au point z, il s’ensuit que les quantités g;; = g;;(z)
sont également attachées au point x et forment une matrice n x n,

9 = (9ij(7))ij,
appelée le tenseur métrique. La forme des relations métriques de 1’espace peut alors se réécrire
ds* = g,(dz, dx),

ou le vecteur tangent est donné par dr = (dxy, --- , dx,). Le tenseur métrique en un point x est donc
une forme quadratique définie sur I'espace tangent en x. De plus, cette forme quadratique doit satisfaire
certaines propriétés naturelles : elle doit étre positive, g, (u,u) > 0, puisqu’elle représente une longueur ; elle
doit également étre définie, g, (u,u) = 0 = u = 0, de sorte que le seul vecteur de déplacement qui ne nous
déplace pas soit le vecteur nul ; enfin, elle doit étre symétrique, g, (u,v) = g, (v, u). Tout cela peut se résumer
en disant que le tenseur métrique est un produit scalaire sur ’espace tangent.

La connaissance locale des relations métriques de ’espace suffit a en déduire la structure globale, en ce
sens que si ’on souhaite connaitre la distance parcourue le long d’un chemin d’un point A & un point B, il
suffit d’intégrer la relation de 1’élément de longueur infinitésimal ds le long de ce chemin, du point A a un
point infiniment proche A+ dz, et ainsi de suite jusqu’a atteindre B en suivant toujours la méme trajectoire.

Plus rigoureusement, un chemin de A a B est représenté par une application différentiable a valeurs dans
notre espace M, donnée par

~v:[0,1] = M,

telle que v(0) = A € M et v(1) = B € M. A chaque instant du chemin, ¢ € (0, 1), nous pouvons calculer la
dérivée 4(t) en cet instant, c’est-a-dire le vecteur vitesse au point v(t). Il s’agit d’un vecteur dans l'espace
tangent attaché au point y(t) € M.

Le tenseur métrique nous permet alors de calculer la longueur de ce vecteur vitesse, c’est-a-dire la vitesse
(scalaire) effective, et il ne reste plus qu’a intégrer cette quantité pour obtenir la longueur totale parcourue :

length(y) = / VG0, 30) d.

Notons la présence de la racine carrée, qui garantit que ’expression possede bien la dimension d’une longueur,
puisque le tenseur métrique g définit une forme quadratique.

Nous renvoyons a [12] pour une monographie compléte.

2.1.1 Variétés différentielles

On part d’un ensemble de points M, que I'on congoit comme ”1’espace” qui nous intéresse, et notre objectif
est d’étre capable de se repérer sur cet espace. On définit donc la notion de coordonnées (on parle de
cartes par référence a la cartographie, la science s’occupant de représenter graphiquement des informations
géographiques).

Définition 2.1.1. Soient pg € V C M, avec V un ouvert. On dit qu’une application bijective
Y:V =R

continue et dont la bijection réciproque est également continue, est une carte locale en pq.

2C’%est un théoréme élémentaire d’algebre linéaire que tout espace vectoriel de dimension n est isomorphe & R™.
3Cela munit ainsi chaque espace tangent T, d’une structure d’espace de Hilbert (Rd, gz)-
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Autrement dit, une carte est un homéomorphisme local.
La condition de bijectivité est importante : elle assure que tout point p € V a un unique ensemble de
coordonnées

Y(p) = (Y1(p), - .-, va(p)) €R

et que réciproquement, & tout ensemble de coordonnées (1, ...,74) € R? correspond un unique point

p:wil(wla"';xd) S M

Définition 2.1.2. On dit qu’'une famille de cartes (¢; : V; — R%);cr est un atlas lorsque les cartes recouvrent

tout I'espace :
Uvi=m.
iel
Une fois que 1'on a une fagon de se repérer dans 1’espace, on souhaite pouvoir effectuer des calculs a partir
de ces coordonnées. Pour cela, on a besoin que les cartes soient des applications différentiables. Etant donné
que l'on sait dériver une fonction définie sur R?, on utilisera les cartes 1 : V — R% pour effectuer les calculs
dans R?, puis on reviendra dans M en utilisant la réciproque 1) ~1.
Rappelons qu'un difféomorphisme de classe C* entre deux ouverts U,V C R? est une application bijective
W : U — V, de classe C*, dont la bijection réciproque ¢~ : V' — U est également de classe C*. On dit
que deux ouverts sont difféomorphes sil existe un difféomorphisme de classe C* entre eux. Notez que pour
que deux ouverts U € R% et V C R?% soient difféomorphes, il faut nécessairement que leurs dimensions
coincident : dy = ds.

Définition 2.1.3. Une variété différentielle de classe C* et de dimension d est un espace M qui est localement
difféomorphe & R? : il existe un atlas (¢; : V; — R%);c1, avec V; C M, tel que les changements de coordonnées

Pio; ' : RT — R
soient des difféomorphismes.

Un changement de coordonnées est défini des lors que deux systémes de coordonnées sont définis sur un
méme voisinage V d’un point p : 1; : V — R% et vV — R¢. Dans ce cas, la composition wiowj_l :R? — R?
est bien définie, voir Figure 2.1.

M

PM,B

-1
Pm,po [?OM,tx

Figure 2.1: Changement de coordonnées, image issue de [14]
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Cette condition de compatibilité, demandant que les changements de coordonnées soient des difféomorphismes,
est essentielle : elle garantit que le fait qu’une application f : M — R soit différentiable en un point p € M
ne dépend pas de la carte utilisée pour le vérifier.

Définition 2.1.4. On dit qu'une fonction f : M — R est différentiable en p € M lorsqu’il existe un voisinage
p € V, C M et une carte ¥ : V,, — R? tels que I'application composée fo1~!: R? — R soit dérivable en
Y¥(p) € Re. La différentielle de f en p est définie par

dfy : R* - R
wi d(f o)y ().
Cette formule ne dépend pas du choix de la carte i ni du voisinage V.

La différentielle de f en p € M, dans la direction u € R?, représente la variation de f au voisinage de p
dans la direction u. Ici, le vecteur u € R? représente donc une direction dans laquelle on peut se déplacer en
partant de p. Il s’agit d’un vecteur attaché a p, appelé vecteur tangent a p.

L’ensemble des vecteurs tangents & un point p forme un espace vectoriel de dimension d, la dimension de
la variété M, et est donc isomorphe & R?. L’espace R? sur lequel est défini la différentielle dans la définition
précédente doit étre compris comme 1'espace tangent T,M a M en p, et non comme un espace euclidien
canonique.

En particulier, si 'on dérive la fonction f en un autre point p’ € M, la différentielle en p’ sera définie sur
un autre espace tangent T, M, toujours isomorphe a R?. Une facon correcte d’y penser est de considérer
T,M comme l'espace formé de toutes les directions dans lesquelles peut se déplacer un point situé en p.
Chaque carte v : V,, — R? fixe un isomorphisme entre T, M et R? via la différentielle de la carte : chaque
vecteur (u1,...,uq) € R? est identifié & un vecteur tangent

(u13x1¢» B udamdd)) S TpM

L’espace tangent attaché a p € M peut aussi étre défini comme ’ensemble des vitesses en p des courbes
dérivables passant par p. Une courbe a valeurs dans M est une application v : (—1,1) — M, et on dit qu’elle
passe par p si v(0) = p. Sa dérivée en 0 est donnée par

7'(0) = (¥~ ' 0)'(0) € RY,

ouny :V, = R? est une carte, et cette dérivée ne dépend pas du choix de la carte grace a la condition de
compatibilité de la définition 2.1.3.

Définition 2.1.5. Soit M une variété différentielle et p € M. L’espace tangent & M en p est défini par
T,M = {7'(0) [y € C'((=1,1); M), 7(0) = p} .

2.1.2 Variétés Riemanniennes

Avec les définitions précédentes, on a réussi a donner du sens & la notion de dérivée sur des espaces non
euclidiens (plus généraux que R%). A ce stade, cependant, nous n’avons aucun moyen de mesurer la taille
d’un vecteur tangent. En effet, I’espace tangent est certes isomorphe & R? mais I’isomorphisme est donné
par le choix d’une carte, c’est-a-dire d’un systéme de coordonnées.

Par conséquent, si ’on utilise cet isomorphisme pour déterminer la taille d’un vecteur, cette taille dépendra
nécessairement du choix du systeme de coordonnées, ce qui est absurde : la hauteur d’un objet ne dépend
pas du systeme de mesure utilisé !

Pour remédier & ce probleme, on doit supposer que sur chaque espace tangent 7, M, il existe une fagon
intrinseque de mesurer, c’est-a-dire un produit scalaire. On peut alors définir la notion de variété riemanni-
enne.

Définition 2.1.6. On dit que M est une variété riemannienne de dimension d si c’est une variété différentielle
de classe C* et que, pour tout point p € M, 'espace tangent T, M est muni d’un produit scalaire

gp : TyM x TyM — R,

tel que I'application p — g, soit lisse.
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A retenir : gp est une matrice symétrique définie positive de taille d x d et constitue un objet intrinseque,
c’est-a-dire que si 'on exprime g, dans un systeme de coordonnées, ses coefficients (gi;)1<: j<a dépendent du
choix de la carte, mais le résultat du produit scalaire g,(u,v) € R ne dépend pas du systéme de coordonnées.

En pratique, étant donnée une carte ¢ : R? — V,,, un vecteur u € T, M s’écrit u = (u;);<q et sa longueur
est

gp(u,u) = gijuiu;.
ij

Ici, les coefficients g;; et les composantes u; dépendent de la carte, mais le produit scalaire g, (u, u), lui, reste
indépendant de la carte.
La philosophie derriere ce formalisme est la suivante :

Une propriété est de nature géoméirique lorsqu’elle ne dépend pas du systéme de
coordonnées choisi.

Ainsi, en pratique, on utilise des coordonnées pour se repérer et effectuer des calculs, mais on cherche des
propriétés invariantes par changement de coordonnées, car ce sont ces propriétés qui fournissent une véritable
information sur la nature de notre probleme.

Dans notre cadre, on dispose de données X1, ..., X, qui vivent sur une variété M, mais ces données sont
fournies sous forme de vecteurs dans R”, avec D trés grand (de I'ordre de plusieurs millions). La variété
M, de dimension d beaucoup plus petite (d < D), est plongée dans RP. En cherchant de I'information sur
la structure intrinseéque des données, et non dépendante de la représentation dans R, on recherche donc
I’information de nature géométrique sur M.

La propriété la plus évidente qui ne dépend pas du choix d’un atlas est le nombre de composantes connexes.
Cette propriété est de nature topologique : elle ne nécessite pas de notion de métrique pour étre définie, la
donnée de la topologie (c’est-a-dire de I'ensemble des ouverts) suffit.

2.1.3 Distance, géodésiques, coordonnées normales

La notion de distance ne dépend pas non plus du choix des coordonnées : c’est bel et bien une notion
géométrique, et heureusement ! Comme mentionné précédemment, une courbe lisse reliant un point p & un
point g est une application de classe C* :

~v:[0,1] = M

telle que v(0) = p et y(1) = ¢. La distance parcourue en suivant cette courbe est définie par

length() = [ /a0 (0.5 0) .

L’idée est simple : la vitesse instantanée est la longueur du vecteur vitesse, on multiplie par le temps dt et
on integre.

On souhaite ensuite définir la distance entre deux points p et g. La distance doit étre la longueur minimale
a parcourir pour aller de I'un a l’autre, peu importe le chemin choisi. Cela se traduit par I'infimum sur tous
les chemins possibles. La distance riemannienne dg induite par le tenseur métrique g est donc

dg(p.q) == inf length(y),

ou l'infimum est pris sur toutes les courbes  reliant p a q.

On peut facilement vérifier que d, est symétrique : dgy(p,q) = dy(q, p), car length(y(t)) = length(y(—t)).
Une courbe qui atteint 'infimum, c’est-a-dire une courbe qui réalise le plus court chemin entre deux points,
est appelée une géodésique minimisante.*

Exercice : Vérifier que dans le cas euclidien (R?, I;), on retrouve la distance classique et que les
géodésiques sont les droites.

4La notion de géodésique en géométrie riemannienne est plus générale que celle de courbe minimisant la longueur.
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Etant donnés deux points p et ¢ sur une variété riemannienne, il est toujours possible de trouver une
géodésique minimisante. Cependant, elle n’est pas forcément unique : pensez aux poles Nord et Sud de
la Terre, reliés par tous les méridiens. Si p et ¢ sont suffisamment proches, il existe toujours une unique
géodésique minimisante. Pour I'exemple de la Terre, seuls les points antipodaux sont reliés par plusieurs
géodésiques minimisantes.

Une construction naturelle est la suivante : étant donné un point p et un vecteur v € 7, M tangent a p,
on veut définir le point ¢ atteint si 'on part de p dans la direction de v et que I'on parcourt une distance
égale a ||v]|y = v/gp(v,v). Si cette distance est suffisamment petite, la géodésique minimisante est unique.
Cela permet de définir 1’ application exponentielle au point p°.

Définition 2.1.7. On définit I'application exponentielle au point p :
exp, : TpM — M
en posant, pour tout u € T, M,
exp,(u) = la valeur au temps 1 de la géodésique minimisante ~y telle que v(0) = p, §(0) = u.
Si ||ul|4 est assez petit, cette application est bien définie, mais elle n’est en général pas définie sur tout T, M.

La plus grande boule B(0,r) C TyM =~ R? sur laquelle 'application exponentielle est bien définie est
appelée le domaine d’injectivité, et le plus grand rayon rmax est le rayon d’injectivité. Alors

exp,, : B(0,Tmax) = M

est un difféomorphisme. Comme la boule ouverte B(0,7max) C R? est difflomorphe & R9% il s’agit d’une
carte. L’application exponentielle fournit ainsi des coordonnées locales tres particulieres autour de p, appelées
coordonnées normales.

Exercice : Montrer que dans I'espace euclidien (R, I;), les coordonnées normales en 0 coincident avec
les coordonnées cartésiennes.

La morale est que les coordonnées normales constituent un choix canonique de coordonnées autour d’un
point, mais ce n’est pas parce qu'une formule est vérifiée en coordonnées normales qu’elle est indépendante
du choix de la carte. Seules les propriétés invariantes par changement de coordonnées sont véritablement de
nature géométrique.

2.1.4 Volume Riemannien

De méme que dans Pespace euclidien R?, la notion de distance permet de définir la notion de wvolume :
une fois que P'on a défini les metres, on peut définir les metres carrés, les metres cubes, etc. Dans R¢, le
volume naturel, c’est-a-dire celui associé & la distance euclidienne (la norme ||-||2), est donné par la mesure de
Lebesgue. Celle-ci associe un nombre réel positif ou nul & chaque partie mesurable A C R?, de facon cohérente
avec la distance euclidienne. En particulier, si R : R? — R? est une isométrie, la mesure de Lebesgue est
préservée :

AR(A)) = \(A).

Dans le cas général ol la métrique est Riemannienne, il existe également une notion naturelle de volume
pour les sous-ensembles de la variété : le volume Riemannien.

Etant donnée une variété Riemannienne (M, g) et une carte ¢ : V — R? pour un ouvert V.C M, le
volume Riemannien d’un ensemble mesurable A C V est défini par

Volg(A) = / \/det (91/)*1(11,..»7004)) dxy---dzg.
p(A)

5Ce terme est utilisé par analogie avec la théorie des groupes de Lie.
6 A vérifier.
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Cette formule se comprend ainsi : en chaque point p € M, le tenseur métrique g, est une matrice d x d
symétrique définie positive. Son déterminant est strictement positif. On se ramene ensuite sur R? via la
carte 1 et on integre par rapport a la mesure de Lebesgue dx; - - - dzq.

Pour que cette définition soit bien géométrique, il faut vérifier deux points :

i) La quantité vol,(A) ne dépend pas du choix de la carte ¢). L’unité de mesure du volume peut varier
selon la carte, mais pas le volume lui-méme.

ii) Si A n’est pas entiérement contenu dans un unique ouvert V muni d’une carte, on découpe A selon un
atlas (V;); et on définit

volyg(A) =Y voly(ANV;),

il faut alors vérifier que ce découpage ne dépend pas du choix de I’atlas.

On retiendra que, de facon infinitésimale et exprimée en coordonnées, la densité de la mesure volume
Riemannienne est

dvoly(x) = /det(g,) dz,

ou dx est la mesure de Lebesgue usuelle. Cette écriture dépend du choix de la carte, mais la mesure volume
Riemannienne sous-jacente reste intrinseque a la variété.

2.1.5 Courbures

La propriété la plus cruciale en géométrie Riemannienne, qui est purement géométrique et ne dépend absol-
ument pas des systemes de coordonnées ni du plongement choisi, est la notion de courbure.

Intuitivement, la courbure mesure a quel point un espace n’est pas plat. L’espace plat étant ’espace
Euclidien, dans lequel le théoreme de Pythagore (2.1.1) est valable et ot la courbure est nulle. Ceci équivaut
a ce que le tenseur métrique soit égal a la matrice identité en tout point et dans toutes les cartes : g = 1.

C’est une notion cruciale en géométrie Riemannienne car la connaissance du tenseur de courbure, appelé
tenseur de Riemann, permet de reconstruire la métrique g. Différentes notions de courbure existent, et
chacune peut se définir & partir du tenseur de courbure. La définition rigoureuse de ce tenseur dépasse le
cadre de ce cours, mais nous allons toutefois définir la notion de courbure sectionnelle, qui sera utilisée a la
section 4.2.

Définition 2.1.8. Soit (M, g) une variété Riemannienne et p € M. Pour tout couple de vecteurs or-
thonormés u, v € T, M, c’est-a-dire tels que

gp(u,u) = gp(v,v) =1 et gp(u,v) =0,
il existe un réel K(u,v) € R tel que
1
dg(expp(tu), epr(tU))2 = t2||u - U”% - gK(uv U) t4 + 0(t4)7

ol || - ||z désigne la norme euclidienne sur T,M. Le nombre K (u,v) est appelé la courbure sectionnelle.
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Figure 2.2: Courbure sectionnelle positive

La courbure sectionnelle mesure localement la déviation de deux géodésiques partant dans deux directions
différentes.

e Si elle est nulle, Pécart entre les géodésiques partant du méme point est linéaire (cas euclidien).
e Si elle est négative, cet écart est sur-linéaire, les géodésique tendent & s’éloigner (cas hyperbolique).

e Si elle est positive, cet écart est sous-lindaire, les géodésiques tendent & se rapprocher (cas sphérique).

»u‘ YLl(g)

Figure 2.3: Courbure sectionnelle négative

2.1.6 Opérateur de Laplace-Beltrami

Etant donnés un point p € M et un nombre r > 0, on peut considérer la boule géodésique B(p,r) de centre
p et de rayon r, c’est-a-dire ’ensemble des points situés a distance au plus r du point p pour la distance
Riemannienne dg :

B(p,r) :={z € M|dy(z,p) <r}.

On peut également considérer les boules ouvertes, selon les besoins. Puisque I'on dispose d’une notion de
volume intrinseque, on définit le volume riemannien des boules géodésiques par vol,(B(p,)).

Soit maintenant f : M — R une fonction de classe C2. Pour tout p € M, on peut calculer le développement
limité en r = 0 de la fonction

1
" oL, (B ) /B@,r) f(w) dvoly(2),
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qui représente la valeur moyenne de f sur la boule B(p, ). On obtient, pour un certain coeflicient dépendant
de f et de p, que I'on note Af(p),

7“2

(émﬂﬂﬂﬁdA@=f@%+%d+%Aﬂm+nw%, (2.1.2)

1
volg(B(p, 7))
ou d est la dimension de la variété M.

Définition 2.1.9. L’opérateur qui & une fonction f € C?(M,R) associe la fonction

p—> Af(p)
défini par le développement de Taylor (2.1.2) est appelé opérateur de Laplace-Beltrami et est noté A.
Exercices :
1. Montrer que si (M, g) = (R, 1), alors opérateur de Laplace-Beltrami correspond & la dérivée seconde
fe=f".

2. Montrer que si (M, g) = (R?, I;), alors I'opérateur de Laplace-Beltrami correspond au Laplacien
d
0% f
— —.
/ ; ox?

La morale & retenir est que le Laplacien d’une fonction en un point p mesure a quel point cette fonction
dévie de sa moyenne sur une petite boule centrée en p.

En particulier, une fonction sur R? dont le Laplacien est nul partout (une fonction harmonique, solution
de Af = 0) est égale a sa moyenne sur toutes les boules. Sur une variété générale, cela n’est plus vrai, car
les termes d’ordre supérieur dans (2.1.2) font intervenir la courbure de la variété.

Théoréme 2.1.10. Soit (M, g) une variété Riemannienne compacte de dimension d. Alors l'ensemble des
fonctions solutions de l’équation

Af=0

forme un espace vectoriel de dimension égale au nombre de composantes connexes de M.
En particulier, si l’on note

k
M=L]Jac
i=1

la décomposition en composantes connexes, alors les k fonctions

1 sipeC, .
ﬂ@%={ P . oi=1,....k

0 stnon

forment une base de l’espace des solutions de Af = 0.

On retient que l'opérateur de Laplace-Beltrami encode, entre autres, les composantes connexes de la
variété.

Un autre résultat fondamental, qui sera utilisé a la section 3.2 pour le clustering spectral, est le suivant,
di & Hermann Weyl.

Rappelons que le spectre d’un opérateur est défini comme pour une matrice : les valeurs A pour lesquelles
il existe une fonction non nulle f telle que

Af=Af
sont appelées valeurs propres, et les fonctions f associées sont les fonctions propres.

Théoréme 2.1.11. L’opposé —A de l'opérateur de Laplace-Beltrami sur une variété Riemannienne compacte
(M, g) de dimension d admet un spectre discret :

O0=X <A <A<

qui tend vers Uinfini (A\y, — oo lorsque k — 00), et chaque valeur propre a une multiplicité finie.
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2.1.7 Théoréme de plongement de Nash et reach d’une variété

Dans cette section, nous présentons le théoreme de Nash ainsi que la notion de reach d’une variété.

Définition 2.1.12 (Plongement). On dit qu'une variété M est plongée dans RP §'il existe une application
f:M—=RP,

appelée plongement, telle que la restriction f|arq : M — f(M) soit une isométrie.
Par abus de notation, on identifiera souvent M avec son image f(M) et on écrira M C RP.

Le théoreme fondamental de Nash affirme que toute variété riemannienne peut étre plongée dans un
espace euclidien :

Théoréme 2.1.13 (Nash). Si M est une variété riemannienne de dimension d, alors il existe un entier
D > d et un plongement f : M — RP. On peut montrer que D = d(d + 1)(3d + 11)/2 suffit.

Conséquences :

e Théorique : Il suffit de comprendre la théorie des sous-variétés de RP pour comprendre la théorie
générale des variétés riemanniennes.

e Pratique : Puisque les données sont toujours collectées comme vecteurs dans RP, toute configuration
riemannienne peut, en principe, étre représentée sous cette forme.

On distingue souvent le point de vue extrinséque et intrinseque :

e Extrinseque : étudier la forme de la surface depuis un espace environnant (ex. la Terre vue depuis
Pespace).

e Intrinseque : étudier la surface sans quitter celle-ci, & partir de mesures locales (ex. distances, angles).
Pour une variété plongée, une quantité extrinseque tres utile est le reach.

Définition 2.1.14 (Reach d’une variété plongée). Soit M C RP une variété plongée. Le reach de M est le
plus grand réel € > 0 tel que tous les points situés dans le e-voisinage de M admettent une unique projection
orthogonale sur M.

Remarque : Le reach dépend du plongement choisi et non uniquement de la variété intrinseque.
e Exemple : une feuille de papier plate plongée dans R3 a un reach infini (en ignorant les angles).

e Sion froisse 1égerement la feuille, son reach devient fini, méme si la géométrie intrinseque reste inchangée
(tant qu’on ne déchire pas la feuille).

Exercice : Montrer que le reach d’une sphére plongée naturellement dans R? est égal & son rayon.

2.2 Géométrie métrique

Un bon cadre théorique pour étudier la géométrie est fourni par la géométrie Riemannienne, comme présenté
a la section 2.1. Ce cadre est extrémement riche et puissant, mais il présente aussi certaines limites qui
découlent précisément de ses forces : la richesse de la géométrie riemannienne provient de la rigidité de sa
structure (cartes lisses, tenseur métrique lisse, etc.), et ces conditions de régularité sont si fortes qu’elles
excluent de nombreux objets qui ne sont pourtant pas pathologiques.

Par exemple, un carré n’est pas une variété riemannienne a cause de ses angles pointus, méme s’il s’agit
d’un objet simple et tres régulier dans un sens intuitif.

Dans cette section, nous introduisons un cadre plus général, permettant de pallier ces limitations tout en
conservant une notion de géométrie significative.
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2.2.1 Définitions générales

Comme on ’a vu a la section précédente, le cadre riemannien a été introduit afin de déterminer les rapports
métriques d’un espace. Pour cela, on a procédé de fagon infinitésimale : on a d’abord défini le tenseur métrique
comme produit scalaire sur 'espace tangent, puis on en a déduit une distance, la distance géodésique.

On peut se demander s’il n’est pas possible de sauter directement cette étape infinitésimale et de considérer
un espace métrique (X,d), c’est-a-dire un ensemble X muni d’une distance

d: X x X >R,
satisfaisant les axiomes classiques :

(i) d(z,y) = 0 <= z = y (séparation),

(ii) d(z,y) < d(z,z)+ d(z,y) (inégalité triangulaire),

(iii) d(z,y) = d(y,x) (symétrie).

Cette approche évite de supposer une structure lisse, trop rigide pour inclure des ensembles simples comme
un carré. En revanche, le contre-coup est évident : maintenant, beaucoup d’exemples sont trop irréguliers
pour étre intéressants, comme les ensembles de Cantor ou d’autres objets fractals.

Pour rendre la théorie plus pertinente, on ajoute des axiomes supplémentaires.

Définition 2.2.1 (Géodésique). Une courbe continue + : [0,1] — X est une géodésique si elle réalise la
distance entre ses extrémités, c¢’est-a-dire si

d(v(t),7(s)) = [t = s[d(7(0),7(1)), Vs, t€[0,1].
Autrement dit, v est une isométrie du segment [0, d(y(0),v(1))] muni de la distance euclidienne.

Définition 2.2.2 (Espace géodésique). Un espace métrique (X, d) est dit géodésique si, pour tout couple de
points z,y € X, il existe au moins une géodésique les reliant (y(0) = z, (1) = y). Notez qu’il peut en exister
plusieurs : par exemple, sur la sphére, entre deux points antipodaux, il existe une infinité de géodésiques.

Définition 2.2.3 (Espace de longueur). Un espace métrique (X, d) est dit espace de longueur si la distance
est réalisée comme l'infimum des longueurs de toutes les courbes reliant deux points :

dayy) = _int (),

ou la longueur d’une courbe v : [0,1] — X est définie par

£(7y) = sup {Zd(’)’(ti—l),')/(ti))

()t0<...<tn1},

Exercice : Comparer les deux notions d’espace géodésique et d’espace de longueur. Sont-elles équivalentes
? L’une implique-t-elle 'autre ?

2.2.2 Géométrie d’Alexandrov

En machine learning, il arrive souvent que les fonctions de colt que 'on cherche & optimiser soient en
fait des distances, ou bien des carrés de distance (comme le coiit quadratique, omniprésent en statistiques
mathématiques).

Or, un des cas les plus simples a étudier pour la minimisation d’une fonction est celui ou cette fonction
est convexe.

C’est le cas du cout quadratique : il s’agit du carré de la distance euclidienne. Sa Hessienne est égale a
deux fois la matrice identité, qui est définie positive, et donc la perte quadratique est évidemment convexe,
voire fortement conveze.

Dans cette section, nous abordons brievement le cas ou le carré d’une distance est fortement convexe, car
cette hypothese a de tres fortes implications géométriques : il s’agit de la théorie des espaces métriques a
courbure d’Alexandrov bornée supérieurement.” Ces notions seront réutilisées & la section 4.2.

"En anglais CBA pour curvature bounded above.
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Définition 2.2.4 (Convexité géodésique). Soit (X, d) un espace géodésique. Une fonction f : X — R est
dite géodésiquement convexe si, pour toute géodésique v : [0,1] — X, la fonction fo~: [0,1] — R est convexe
au sens usuel. Autrement dit, pour tous x,y € X et toute géodésique ~y reliant x a vy,

vee 0], f(v(1) < (1 =) f(7(0)) + £ (v(1)).

Définition 2.2.5 (Convexité géodésique forte). Soit (X, d) un espace géodésique. Une fonction f: X — R
est dite K -fortement géodésiquement convezxe si, pour toute géodésique = : [0,1] — X, la fonction f o~y est
K-fortement convexe au sens usuel, ¢’est-a-dire :

Ve 0.1), SO(0) < (1= DF(0) + (1) ~ 5 d(a )

Exercice : Montrer que les seules fonctions f : S — R géodésiquement convexes sont les fonctions
constantes. Indication : la définition requiert la convexité le long de toutes les géodésiques, y compris
lorsqu’il n’y a pas unicité.

Nous pouvons maintenant introduire la notion centrale pour les espaces a courbure non positive.
Définition 2.2.6 (Espace CAT(0)). Un espace métrique (X, d) est dit CAT(0) si :
(i) il est géodésique et complet,

(ii) pour tout point p € X, la fonction
x> d(p,z)?

est 1-fortement géodésiquement convexe.

L’acronyme CAT provient des noms de Cartan, Alexandrov, Toponogov, trois mathématiciens ayant
contribué au développement de cette théorie.

Exercice : L’espace Euclidien (R,|| - ||2) est-il CAT(0) ? Qu’en concluez-vous ?
Quelques propriétés importantes des espaces CAT(0) :

(i) Une variété Riemannienne est CAT(0) si, et seulement si, sa courbure sectionnelle est partout non
positive.

(ii) Les arbres métriques sont CAT(0).
(iii) Dans un espace CAT(0), pour tous points z,y € X, il existe une unique géodésique reliant z a y.

(iv) Pour toutes géodésiques 71,72 : [0,1] — X, la fonction

t=d(m(t),72(t))
est géodésiquement convexe.

(v) Comparaison des triangles : un espace est CAT(0) si et seulement si tous ses triangles sont ”plus
fins” que les triangles Euclidiens. Formellement, pour tout triangle (x,y, z) dans X, il existe un triangle
modele (2/,1/, ') dans R? avec les mémes longueurs de cotés, et pour toutes géodésiques v,,, reliant les
sommets correspondants,

d(Yurw (1), Yuw () < |[(1 =)' +to" — (1 — )’ + tw')||, VYt e [0,1],
pour toutes paires de sommets (u, v, w) du triangle.

Exercice : En utilisant la comparaison des triangles et la définition de la courbure sectionnelle de la
section 2.1.5, montrer la propriété (i).
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2.3 Topologie

La topologie est une discipline des mathématiques née des travaux de Henri Poincaré entre la toute fin du
19¢me siecle et le tout début du 20eme, alors baptisée par 1'expression latine Analysis Situs, assez difficile-
ment traduisible, éventuellement signifiant quelque chose comme ”analyse de la position” ou ”analyse des
situations”. (Noter qu’étymologiquement, la topologie est la science des lieux).

En langage moderne, I'idée de la topologie est de pouvoir définir la notion de voisinages entre points d’un
espace, et la notion de continuité d'une transformation de cet espace, sans avoir & recourir & la notion de
distance. Dit autrement, la topologie permet de parler de voisinages, c’est-a-dire de dire si deux points sont
voisins ou non, sans quantifier cela, et donc seulement de fagon qualitative. Il s’agit donc d’une théorie de
géométrie encore plus générale que la notion d’espaces métriques. Il s’agit de la topologie générale, usuelle-
ment aujourd’hui enseignée en L3 de mathématiques.

Une idée plus poussée, décrite comme de la topologie algébrique, consiste a vouloir associer des invariants
algébriques a des espaces, afin d’étre en mesure de comparer ces espaces en comparant leurs invariants. Cette
branche de la topologie est dite algébrique car les invariants sont de nature algébrique : groupes, espaces
vectoriels, etc. Un invariant est une fonctionnelle® qui, & un espace X, associe un objet A(X) (souvent
de nature algébrique) vérifiant la propriété suivante : si X et X’ sont isomorphes’, alors ils ont le méme
invariant'® A(X) = A(X’). Les invariants permettent donc de déterminer si deux espaces sont vraiment
distincts, au sens ol si 'on arrive & montrer que A(X) # A(X'), alors X # X’. Noter que la plupart du
temps, un invariant ne caractérise pas un espace, c’est-a-dire qu’on peut trés bien avoir A(X) = A(X’) mais
X # X'

2.3.1 Le groupe fondamental

Un invariant topologique que vous avez tres probablement déja rencontré est le groupe fondamental. Etant
donné un espace topologique X et un point zg € X, on considere ’ensemble de ses lacets, c’est-a-dire
I'ensemble des applications continues 7 : [0,1] — X telles que (0) = (1) = zp. On munit cet ensemble de
la loi de concaténation : si v, et o sont des lacets, alors le lacet produit v := 12 est défini par

_ Jmi(2) sitel0,1/2],
= {72(2t —1) site[1/2,1].

Ceci munit I’ensemble des lacets basés en zy d’une structure de groupe. On ne veut alors décompter comme
différents que les lacets qui ne peuvent pas étre déformés contintiment 'un en 'autre. De facon formelle, on
passe au quotient ’ensemble des lacets par la relation ”étre homotopes”, et cet ensemble quotient obtenu est
alors appelé le groupe fondamental et dénoté (X, zp). Il s’agit d’un invariant topologique, au sens ou si
¢ : X = X’ est un homéomorphisme, alors les groupes (X, xg) et 71 (X', ¢(xo)) sont isomorphes.

Exercice : Deux lacets 71 : [0,1] = X et 72 : [0,1] — X basés en zp € X sont dits homotopes 81l existe
une fonction continue H : [0, 1] x [0, 1] — X vérifiant les trois conditions

vt € [0,1], H(t,0) = 1 (¢),
Vit € [0,1], H(t, 1) = v2(t),
Vs € [0,1], H(0,s) = H(1,s) = xo.

Le groupe fondamental est défini comme ’espace des lacets identifiés entre eux par homotopie. Que faut-il

vérifier pour s’assurer que la loi de composition définie précédemment définit bien une structure de groupe ?
Vérifiez-le.

8on dira souvent un foncteur par référence a la théorie des catégories
9par exemple homéomorphes, isométriques, etc.
10)invariant est invariant, d’ot son nom...
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Exercice : Montrer que si X est connexe par arcs, alors pour tout x,y € X, les groupes 71 (X, z) et
m1(X, y) sont isomorphes, permettant alors de parler du groupe fondamental de X.

D’un point de vue intuitif, le groupe fondamental est relié au nombre de ”"trous” dans l’espace. Par exem-
ple, la spheére a un groupe fondamental trivial (c’est le groupe composé d’un seul élément, le lacet constant égal
au point de base) ; on dit qu’elle est simplement conneze. Le tore a un trou'!, son groupe fondamental est Z2.

Exercice : Montrer que le groupe fondamental du tore est Z2.

Plus généralement, deux fonctions f,¢g : X — Y sont dites homotopes s’il existe une fonction continue
H:[0,1] x X =Y telle que H(0,-) = f et H(1,:) = g.

Deux espaces X et Y sont dits homotopiquement équivalents s’il existe deux applications f : X — Y et
g:Y — X telles que f o g est homotope & Idy et g o f est homotope & Idx.

Un espace X est dit contractile s’il est homotopiquement équivalent & un point (c’est-a-dire & I'espace
singleton {0}).

Exercice :

1. Montrez que R? est contractile.

2. Montrez que le groupe fondamental d’un espace contractile est réduit a un point.
3. Un tore est-il un espace contractile ?
4

. Un cercle est-il contractile ?

2.3.2 Homologie simpliciale

Un k-simplexe est défini comme 1’enveloppe convexe de k + 1 points affinement indépendants dans R¥. Par
exemple, un 1-simplexe est un segment, un 2-simplexe est un triangle, un 3-simplexe une pyramide, etc.

Un complexe simplicial K est une famille de simplexes telle que toutes les faces d'un simplexe de K sont
elles-mémes des simplexes de K, et I'intersection de deux simplexes de K est soit vide, soit une face commune
aux deux.'?

Un complexe simplicial abstrait est la codification en théorie des ensembles d’un complexe simplicial, sans
avoir & demander que les éléments du complexe abstrait soient vraiment des simplexes. Etant donné un
ensemble quelconque V', on dit que A est un complexe simplicial abstrait avec sommets dans V si V C A et
si pour tout o € A, tout sous-ensemble s C o est un élément de A : s € A.

L’homologie simpliciale est alors définie de la fagon suivante pour K un complexe simplicial.
Soit k € N. L’ensemble des k-chaines Cy (K) est défini comme étant ’ensemble des sommes finies formelles
écrites a partir des k-simplexes o; € K :

p
Znial-, avec n; € Z/27.
i=1

Dit de fagon plus rigoureuse, il s’agit de 1’espace vectoriel sur'® le corps Z/2Z des entiers modulo 2 engendré
par les k-simplexes de K.

Le bord d’un k-simplexe o = [vg, - - , vg] est défini comme le (k — 1)-simplexe donné par
k
8k(0) = Z(—l)i[vo, s ,ﬁi7 R ,’Uk],
i=0
Heest un donut

12Une triangulation est un complexe simplicial ; il s’agit d’une généralisation de ce concept.
130n peut prendre d’autres coefficients, par exemple Z
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ou [vg, -+ , 04+ ,vk] dénote le (k — 1)-simplexe généré par les points vy, - - - , vy auxquels on a retiré v;.

L’opérateur de bord peut alors étre prolongé en une application linéaire
Ok : Cr(K) = Cr_1(K),

son noyau ker(d;) C Ck(K) est appelé Pespace des k-cycles, et son image Im(9x) C Cr—1(K) est appelée
I’espace des k-bords. Les opérateurs de bord vérifient la propriété fondamentale

6k ] 8k+1 =0.

Reformulée avec des mots, cette relation fondamentale dit que les bords n’ont pas de bord, et elle implique
que les (k + 1)-bords sont des k-cycles :

Im(Oky41) C ker(0).
On peut alors considérer ’espace vectoriel quotient
Hy(K) = ker(0x)/Im(0k+1),

qui est appelé le k-eme groupe d’homologie simpliciale, et sa dimension by (K') est appelée le k-éme nombre
de Betti.

Il s’agit d’invariants topologiques : si K et K’ sont homéomorphes, alors ils ont les mémes groupes
d’homologie et les mémes nombres de Betti.

Enongons les faits suivants' :

e Tous les Hj(K) sont abéliens par construction.

e Hy(K) est égal au nombre de composantes connexes de K.
e Hy(K) est égal a 'abélianisé du groupe fondamental m (K).

Exercice : Déterminer I’homologie simpliciale de la sphere S™.

14 A défaut de preuve rigoureuse, le lecteur est au moins invité & réfléchir & pourquoi ces faits sont vrais



Chapter 3

Metric learning

3.1 Du discret au continu

La géométrie traite d’objets continus, d’espaces ayant une infinité de points, alors qu’en pratique les données
seront toujours en nombre fini et induiront donc des structures discretes, en particulier des graphes. Il est
donc légitime de se demander si I'introduction d’objets aussi abstraits que les variétés riemanniennes pour
rendre compte de la structure des données' est une idée pertinente.

Dans cette section, on présente un résultat di & Gromov, connu sous le nom de théoréme de reconstruction,
permettant d’argumenter en faveur du fait que la théorie des espaces métriques mesurés reste cohérente avec
la structure discrete des données, en ce sens que les données déterminent ’espace a la limite. Plus précisément

Théoréme 3.1.1. (Théoréme de reconstruction de Gromov)

Soient (M, da, 1) et (N, dpr,v) deus espaces métriques mesurés, et soient deuz échantillons (infinis) (X;)ien
avec les X; i.i.d. a valeur dans M et de loi p, et (Y;)ien avec les Y; i.i.d. a valeur dans N et de loi v.
On consideére les suites de matrices My, = (dpm(Xs, X;))1<ij<n €t Np = (dn (Y5, Y)))1<ij<n. Si pour tout
n € N, M,, et N,, ont la méme loi, alors les espaces sont isomorphes, au sens ot il existe une application
f: M — N qui soit une isométrie envoyant . sur v.

Rappelons que f: M — N est dite étre une isométrie si c’est une application surjective vérifiant

Ve,y e M, dy(f(2), f(y) = dm(z,y).

Exercice : Si f : M — N est une isométrie, montrer qu’elle est aussi injective, et que sa bijection réciproque
1 N — M vérifie

va',y € N du(fTHE), fHY) = da(@y).
Rappelons également qu’on dit que I'application f : M — N envoie u sur v si le push-forward de p par f est
égal & v, autrement dit si X ~ p alors f(X) ~ v, ou encore pour toute fonction continue bornée ¢ : N’ — R,

/ o(f () du(z) = / o(y) dv(y).
M N

3.2 Spectral Clustering

La référence principale de cette section est le papier de Von Luzburg [21].

Le clustering consiste a ranger les données en différents sous-groupes, appelés clusters, qui partagent des
caractéristiques communes.

Pour le graphe d’un réseau social par exemple, il s’agit de détecter les communautés, c’est-a-dire de
retrouver quels sont les sous-groupes d’utilisateurs qui interagissent le plus entre eux. Par définition, on

1via ’hypothese de la variété

29
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veut trouver des sous-groupes qui partitionnent le graphe de telle sorte que chaque personne interagisse
significativement plus avec les personnes de son propre cluster qu’avec celles des autres clusters.

Une des forces des méthodes que l'on va examiner, et donc aussi une des difficultés, est que ’on souhaite
détecter les communautés de facon non supervisée, c’est-a-dire sans acceés & des données étiquetées. Par
exemple, dans le cas du graphe d’un réseau social, aucun utilisateur n’est étiqueté avec le groupe auquel il
appartient : on ne sait pas quels sont les groupes, et on doit les construire. On parle d’apprentissage non
SUPETVISE.

D’un point de vue géométrique, les différents clusters que I'on cherche a apprendre correspondent aux
composantes connexes du graphe des données.

Si les données sont de grande dimension X; € R”, on peut partir du principe? qu’elles sont supportées sur
une sous-variété M C RP, et par conséquent le graphe construit & partir des données sera une discrétisation
de cette variété M. Ainsi, apprendre quelles sont les composantes connexes du graphe revient & apprendre
celles de la variété M. Or, tandis qu'un graphe est un objet mathématique relativement peu structuré?, on
peut tirer avantage de la structure riche de la variété M pour estimer ses composantes connexes.

Nous avons vu a la section 2.1.6 qu'il existe un opérateur différentiel linéaire d’ordre 2 sur une variété
compacte M, appelé I'opérateur de Laplace-Beltrami, dont le noyau* caractérise entierement les composantes
connexes de M, au sens ou ’ensemble des fonctions constantes sur chacune des composantes connexes forme
une base. Par conséquent, la question géométrique de la détermination des composantes connexes de M se
réduit a la question analytique de trouver ’ensemble des solutions de I’équation de Poisson

Af =0.

Résoudre cette équation revient a résoudre une EDP elliptique linéaire d’ordre 2, faisable par des schémas
numériques. Cependant, dans notre cas, nous ne connaissons pas réellement la variété M ni son tenseur
métrique g, et nous n’avons donc pas acces & A. Nous n’avons acces qu’a un échantillon de points X1, -+, X,, €
M C RP, et il va falloir trouver une facon de discrétiser I'opérateur différentiel A & partir de cet échantillon,
ce qui nous ramene & déterminer le noyau d’une matrice, computationnellement tractable.

L’opérateur A discrétisé est une matrice de taille n x n, appelée le graph Laplacian. Cela s’explique ainsi
: Popérateur de Laplace-Beltrami agit sur des fonctions f : M — R, vues comme des vecteurs de dimension
le cardinal de M : f = (f(2))zem € RM. Ici, nous n’avons pas accés & M tout entier, mais seulement
a Péchantillon X := {X;,---,X,} C M. Ainsi, les fonctions sur M sont remplacées par des vecteurs sur
X, c’est-a-dire des éléments de R™. Par conséquent, I'opérateur de Laplace-Beltrami, linéaire, devient une
application linéaire de R™ dans R”, soit une matrice n X n.

Il existe plusieurs fagons de construire un graph Laplacian. Dans ce qui suit, nous présentons le normal-
ized graph Laplacian ; pour un apercu des autres constructions, voir [21].

On commence par construire une matrice de similarité entre les points de X :
K = (kij)i<ij<n = (k(X3, Xj))1<ij<n,

définie & partir d'un noyau k : M x M — R} supposé positif, continu et symétrique. Le noyau est souvent
défini sur RP x RP contenant M x M. Le noyau le plus utilisé est le noyau gaussien :

e = 2,

2en,

ou &, est un parametre de bandwidth a choisir de fagon appropriée pour garantir la convergence lorsque
n — 0o.

2d’apres I’hypothése de la variété
3c’est un objet discret!
4¢’est-a-dire Pespace propre associé & la valeur propre zéro
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On définit ensuite la matrice des degrés, diagonale, dont les entrées sont d; = Z;'L=1 kij
D = Diag(dy, - ,dy).
Le normalized graph Laplacian est défini par
L:=1-DY*KkD™1/2 (3.2.1)
avec I la matrice identité n x n.
Exercice :
1. Montrer que L définit une forme quadratique linéaire sur R", donnée par

2
R x; x;
XTLX =2 ) kij|——=—-—F4] .
s 3k (G )

i,j=1

2. En déduire que L est diagonalisable.

3. Montrer que 0 est valeur propre avec vecteur propre D21, olt 1 est le vecteur dont toutes les coor-
données valent 1.

4. Montrer que toutes les valeurs propres de L appartiennent & U'intervalle [0, 1].

Remarque : la matrice L ne converge vers le véritable Laplacien qu'une fois correctement normalisée. 11
faut choisir £, — 0 & la bonne vitesse ; alors e, 'L — —A. La matrice L converge vers un noyau de transition
markovien, expliquant pourquoi ses valeurs propres sont dans [0, 1] tandis que celles de —A sont dans R .
Les valeurs propres de L convergent vers 1, en accord avec le Théoreme 2.1.11 vu a la section 2.1.6.

Pour n grand et ¢, bien choisi :

f(X1) Af(X1)
6;1L ~ .

F(X) AF(Xn)

Par le théoreme 2.1.10, le noyau du Laplacien encode les composantes connexes de M, i.e. les clusters.
On étudie donc le noyau de ¢, 1 L (ou L) pour retrouver les clusters. La convergence de 'opérateur discretisé
garantit que les k premieres valeurs propres permettent de récupérer les k clusters.

Le spectral clustering consiste a diagonaliser L, retenir les k& premieres valeurs propres 0 = A\; < Ao <
- < A\ et leurs vecteurs propres ui, - -+ ,ur € R™. On forme la matrice

j k
U = (u)1<i<n,1<j<k € R™V

On définit les coordonnées spectrales des points :

k k
Yi :(uzla 7uz’) € R".
On applique ensuite un algorithme k-means sur yy,--- , ¥, pour obtenir des clusters A, ---, Ay C R*, puis
on en déduit les clusters C1, - -+, Cy des données originales :

XiGCj@yi EAJ'.
Ainsi, le spectral clustering revient a effectuer un k-means en coordonnées spectrales.

Récapitulatif des principes :
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1. Les composantes connexes d’une variété correspondent au noyau de 'opérateur de Laplace-Beltrami
(Théoreme 2.1.10).

2. Convergence du graph Laplacian vers le Laplace-Beltrami :

enl — —A.
n—oo
Le premier point explique le fonctionnement intuitif de 1’algorithme, et le second garantit la consistance
statistique du spectral clustering, comme traité dans la littérature, voir par exemple [22].

3.3 Réduction de dimension non linéaire

Si ’hypothese de la variété est vraie, alors les données vivent sur une variété de dimension beaucoup plus
faible que l’espace ambiant. Le metric learning, ou apprentissage de la variété, permet donc de réduire la
dimension : c’est ce que 'on appelle les méthodes de réduction de dimension non linéaires, en opposition aux
méthodes linéaires, dont la plus célebre et utilisée est I’Analyse en Composantes Principales (PCA).

Dans cette section, nous présentons l'algorithme Isomap ainsi que les diffusion maps, mais il existe
évidemment beaucoup d’autres techniques. Pour une revue plus détaillée, voir par exemple [20].

3.3.1 Isomap

Isomap (Isometric Mapping) est une technique non linéaire de réduction de dimension introduite dans [19],
qui vise a préserver la structure géométrique intrinseque des données de haute dimension en approximant
les distances géodésiques entre les points de données. Contrairement aux méthodes traditionnelles comme
PACP (Analyse en Composantes Principales), qui reposent sur des hypotheses linéaires, Isomap capture la
structure du ”manifold” sous-jacent en construisant un graphe de voisinage ot chaque point est connecté a
ses voisins les plus proches. Les arétes de ce graphe sont pondérées selon les distances euclidiennes entre
les points connectés. La distance géodésique, représentant le plus court chemin le long du manifold, est
ensuite estimée en calculant d,,, le plus court chemin entre des paires de points dans ce graphe pondéré.
Ces distances géodésiques estimées sont ensuite utilisées comme entrée pour le "MultiDimensional Scaling”
(MDS), qui projette les données dans un espace de dimension inférieure tout en préservant les relations
géométriques globales. Cela rend Isomap particulierement efficace pour les ensembles de données dont la
géométrie intrinseque est non linéaire ou fortement courbée.

Nous nous concentrons sur le e-graphe, dans lequel deux points z; et ; sont adjacents si et seulement si
|z; — ;] < e. Dans ce graphe, nous attribuons le poids w;; = |z; — x;| & I'aréte {z;, z;} lorsque z; ~ ;.

Définition 3.3.1. Etant donné ¢ > 0, la distance Isomap est définie comme la distance du e-graphe entre
x; et xj, c’est-a-dire :

T
dp(x,y) = inf Z |xip1 — 24,
R

ou l'infimum est pris sur tous les chemins v = (xo,...,Z,41) avec Ty = z, T,41 = ¥y, T; € X, pour tout
1<i<r et|zit1 — x| < e pour tout 0 < i <r.

Une version alternative de la distance Isomap considere le graphe des K plus proches voisins au lieu du
e-graphe. Dans ce cas, deux points z; et x; sont connectés par une aréte si I'un d’eux appartient a I’ensemble
des K plus proches voisins de 'autre selon la distance euclidienne. Dans ce qui suit, nous nous concentrons
sur la formulation du e-graphe, bien que des résultats similaires s’appliquent au graphe des K plus proches
voisins. Le théoréme suivant a été établi dans [4].

Théoréme 3.3.2. Soit M une sous-variété lisse, compacte et connexe de dimension d de RP, et soit p la
mesure de volume normalisée sur M. Soit X,, = {X1,..., Xy} un échantillon i.i.d. tiré de p, et soit d,, ., la
distance du plus court chemin sur le graphe des e, -voisinages construit sur X,,, ot deuz points sont connectés
dés que leur distance euclidienne est inférieure d &,. Si e, — 0 et ned — oo, alors

P
sup |do.c, (2,9) — dp(a,y)] —— 0,
I’yexn n— oo
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c’est-a-dire que la distance Isomap converge en probabilité vers la véritable distance géodésique dp; sur M.
De plus, si le tauz plus fort ne? /logn — oo est vérifié, la convergence ci-dessus est presque sire.

Notez que dans la condition sur le taux pour €, c’est la dimension intrinseque d qui apparait, et non la
dimension ambiante (qui peut étre trés grande) D.

On pourrait s’arréter la et faire des statistiques avec cette distance apprise par Isomap. Cependant,
la plupart du temps, dans la pratique, on l'utilise pour projeter les données dans un espace de dimension
inférieure a celle de départ. La méthode la plus couramment utilisée pour cela est le MultiDimensional Scaling
(MDS). 11 s’agit de partir du graphe complet des données, avec les arétes pondérées par les distances apprises
entre les points. On cherche alors des points 1, ...,y, € R? avec d < D, choisis de maniére & minimiser le

"stress” entre les points :
1/2

> (dne(Xi, X;) = llyi — yjlla)?
i#j

3.3.2 Meéthodes spectrales: Laplacian eigenmaps/ Diffusion maps

Dans la section 3.2, nous avons vu l'utilisation de 'opérateur de Laplace-Beltrami pour retrouver les com-
posantes connexes d’une variété, et en particulier I'utilisation de sa version discrétisée, le graph-Laplacien,
ainsi que son spectre.

L’idée était que si I'on cherche k clusters, cela signifie que le noyau du Laplace-Beltrami est de dimension
k et que les clusters correspondent aux k fonctions propres générant ce noyau. Dans la version discrétisée,
on prend alors les k plus petites valeurs propres ainsi que les vecteurs propres associés.

On appliquait ensuite 1'algorithme des k-means dans cet espace de coordonnées spectrales. Cela corre-
spond a considérer les lignes de la matrice des vecteurs propres, et non plus les colonnes ; on se retrouve ainsi
en dimension k£ au lieu de n.

Dans ce cas, l'entier k était choisi comme le nombre de clusters recherchés. Mais 'idée du plongement
spectral est de prendre k bien plus petit que n, simplement pour réduire la dimension du probleme. C’est
précisément ce dont bénéficie 'algorithme de spectral clustering : on applique un k-means & n vecteurs de
dimension k (beaucoup de vecteurs en "basse” dimension) plutét qu’a k vecteurs propres de dimension n
(peu de vecteurs mais de grande dimension®).

La réduction de dimension spectrale consiste donc a réduire la dimension du probléme, mais une fois la
dimension réduite, on peut analyser les données comme on le souhaite, et pas seulement appliquer le k-means.

En particulier, la réduction de dimension peut servir a rendre possibles des calculs trop cotteux autrement,
mais elle est également utilisée comme outil de statistique descriptive, c’est-a-dire pour projeter les données
en dimension 2 ou 3 tout en respectant leur géométrie, les rendant ainsi visualisables.

Réduire la dimension des données dans R” signifie apprendre une fonction

¢:RP 5 RY d< D.

Dans le cadre de la réduction de dimension spectrale, on choisit ¢ de la maniére suivante. Soient
X1,...,X, € RP les données, et posons

X={Xy,...,X,} CRP.
On apprend la fonction ¢ uniquement sur ’ensemble des données, c’est-a-dire
0: X =R

Sous I’hypothese de la variété, ot les données sont supportées sur une variété M C RP, on s’attend &
ce que, pour un nombre de données n grand, la fonction apprise ¢ converge vers une fonction définie sur la
variété :

©: M =R

5 z . ’ . .
°le scénario redouté en statistiques !
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On construit alors un graph-Laplacien L, qui est une matrice n X n. On choisit d, la dimension réduite.
Typiquement, on prend d = 2 ou d = 3 pour de la visualisation, ou on choisit d de maniere empirique selon
le probleme. Dans ce cas, D peut étre de 'ordre du million, et d d’une centaine, par exemple.

On calcule alors les d premiers vecteurs propres :

up = (ui,...,u}) € R™,

ug = (uh, ..., ul) € R™
La fonction ¢ est alors définie comme les coordonnées spectrales :
¢ : X, = RY,
X (ub, .o ub).

Remarquez que si 'on met tous les vecteurs u; en colonnes dans une matrice n x d, la fonction ¢ revient
a associer a X; la i-eéme ligne de cette matrice.

Il existe un degré de liberté dans ce type de méthode : le choix du graph-Laplacien considéré. Dans
la section 3.2, nous avons présenté le Laplacien discret normalisé défini par I’équation 3.2.1. Dans ce cas,
I’apprentissage de la fonction ¢ est appelé la méthode Laplacian Figenmaps, introduite par Belkin et Niyogi
[1,2].

Un autre choix standard consiste a considérer le noyau de transition markovien :

P:=D'K,

qui définit une marche aléatoire sur le graphe des données. L’embedding obtenu a partir des vecteurs propres
de P est appelé Diffusion Map, introduit par Coifman et Lafon [g].
Le Laplacien associé a cette dynamique est le random walk graph Laplacian :

L™ :=1-D'K
D’un point de vue calculatoire, on a la relation
Lrw _ D_1/2Lsy1nD1/27
ce qui montre que ces deux opérateurs ont des propriétés spectrales étroitement liées.

Exercice : Montrer que A est une valeur propre de L™ avec vecteur propre u si et seulement si elle est
une valeur propre de L avec vecteur propre D'/?u. Conclure.

Du point de vue théorique, la justification de ces méthodes repose sur deux faits principaux :

1. les résultats de plongement des variétés dans des espaces de Hilbert via l'utilisation des noyaux de la
chaleur [3],
2. la convergence des graph-Laplaciens vers des opérateurs définis sur la variété des données.
Remarque 3.3.3. Le noyau de la chaleur est défini par P, = e~ *» ; il s’agit d’une famille d’opérateurs
interpolant entre 'opérateur identité pour ¢ = 0 et un opérateur P, qui associe a une fonction sa moyenne
par rapport a la mesure de volume sur la variété :

1
f— vol(./\/l)/MdeOL

Pour un ¢ > 0 fixé, on considere le spectre de I'opérateur de Laplace-Beltrami

0= A< <,
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ainsi que les fonctions propres associées ug, u1,.... Les auteurs montrent que I'application
M = 2,
e (\/5(4w)d/4t#ewt/2uj(x))

>0

est un plongement de la variété M de dimension d dans 1’espace de Hilbert ¢2 des suites & carré sommable.
La convergence des graph-Laplaciens assure ensuite la consistance des procédures de plongement spectral.

3.3.3 UMAP, SNE, t-SNE

Les algorithmes UMAP, SNE et t-SNE sont également parmi les techniques de réduction de dimension non
linéaire les plus utilisées. Voici une liste de sujets de présentation, avec pour référence I'article [15].

1. expliquer I'algo SNE
2. expliquer I'idée géométrique de SNE
3. présenter une simulation en Python de SNE
4. expliquer 'algo t-SNE
5. expliquer I'idée géométrique de t-SNE
6. présenter une simulation en Python de t-SNE
7. expliquer I’algo UMAP
8. expliquer I'idée géométrique de UMAP
9. présenter une simulation en Python de UMAP
10. a quoi servent ces algos, comment sont-ils utilisés ?

11. quels mauvais usages sont pointés dans le papier [13] ?

3.4 Analyse Topologique des données

Cette section suit de trés prés le déroulé de lexposé de Frédéric Chazal et Bertrand Michel [7], dont elle
reprend également les illustrations. Les lecteurs intéressés sont vivement invités a consulter ce trés bel exposé.

Dans les méthodes de clustering, I'objectif était d’apprendre les composantes connexes d’une variété
riemannienne, supposée étre le support de la loi des données observées.

On a vu a la section 2.3 que, d’un point de vue topologique, les composantes connexes sont encodées par
le zéro-ieme groupe d’homologie Hy.

En analyse topologique des données, on cherche a apprendre sur les données des propriétés topologiques
plus fines que la simple connaissance des composantes connexes. En particulier, on verra comment récupérer
de l'information sur les groupes d’homologie d’ordre supérieur. Puis, on définira la notion d’homologie
persistante et on montrera comment cette notion permet d’éliminer le bruit inhérent aux données grace aux
résultats de stabilité.

3.4.1 Le théoreme du nerf

L’homologie que ’on cherche a apprendre concerne avant tout les complexes simpliciaux. On commence donc
par voir comment construire des complexes simpliciaux a partir des données, c’est-a-dire a partir d’'un nuage
de points et non plus d’un espace topologique continu, comme c’était le cas en théorie (cf. Section 2.3). Les
deux constructions les plus utilisées sont les suivantes :



36 CHAPTER 3. METRIC LEARNING

Définition 3.4.1 (Complexe de Vietoris-Rips). Etant donnés o > 0, £k € N, et un nuage de points X,, =
{z1,...,2,} dans un espace métrique (X, d), le complexe de Vietoris-Rips, noté Rips,(X,), est défini comme
I'ensemble des simplexes [z, ..., x| tels que d(x;,z;) < a pour tout 4, j.

Par définition, le complexe de Vietoris-Rips est un complexe simplicial abstrait (cf. Section 2.3). Méme
si les données sont & valeurs dans R?, ce complexe n’admet pas forcément de réalisation dans R? et peut étre
de dimension plus grande que d.

Exercice : Montrer que pour k£ = 1, le complexe de Vietoris-Rips est égal au graphe des a-voisinages.

Définition 3.4.2 (Complexe de Cech). Etant donnés o > 0, k € N, et un nuage de points X,, = {z1,...,z,}
dans un espace métrique (X,d), le complexe de Cech, noté Cechq(X,), est défini comme ’ensemble des
simplexes [z, ..., zx] tels que les (k4 1) boules fermées B(z;, o) aient une intersection non vide.

Figure 2: The Cech complex Cechg (X) (left) and the and Vietoris-Rips Rips,,, (3{) (right) of a
finite point cloud in the plane [R2. The bottom part of Cech, (X) is the union of two adjacent
triangles, while the bottom part of Rips,, (¥X) is the tetrahedron spanned by the four vertices and
all its faces. The dimension of the Cech complex is 2. The dimension of the Vietoris-Rips complex
is 3. Notice that this later is thus not embedded in R%,

T

Figure 3.1: Illustration provenant de [7]

Exercice : Montrer les inclusions suivantes :
Ripso(X,) C Cecha(X,) C Ripsaa(X,).

Définition 3.4.3 (Nerf d’un recouvrement). Un recouvrement d’un espace topologique X est une famille
de sous-ensembles U = (U;);er telle que X = Uie ; Ui, Le nerf d’un recouvrement U est défini comme le
complexe simplicial abstrait C'(U) dont les sommets sont les sous-ensembles U;, et tel que

k
o=[U,...,Up] €CU) & [U, #0.
j=0

On peut maintenant énoncer le théoreme du nerf, qui affirme que si 'on choisit le recouvrement de facon
suffisamment réguliere, alors I'espace est topologiquement équivalent au nerf de ce recouvrement.

Théoréme 3.4.4 (Théoreme du nerf). Soit U = (U;);er un recouvrement de X, tel que pour tout J C I,
mjeJ U; soit vide ou bien contractible. Alors X est homotopiquement équivalent au nerf C(U) du recouvre-
ment.
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Us

Figure 3: The nerve of a cover of a set of sampled points in the plane.

Figure 3.2: Tllustration provenant de [7]

Le théoreme du nerf garantit que si I’on parvient a inférer de I'information topologique a partir du nerf
d’un recouvrement régulier, alors cette information est également valide pour 1’espace sous-jacent (le support
des données). Ceci est particulierement utile, car nous n’avons pas acces au support des données®, mais on
peut manipuler les nerfs de recouvrement, assurant ainsi qu’aucune information n’est perdue par ce procédé.

Exercice :
1. Montrer que le complexe de Cech est le nerf d’un recouvrement, a déterminer.
2. Montrer que les ensembles convexes de R? sont contractibles.

3. En déduire que si X,, ¢ R4, alors le complexe de Cech est homotopiquement équivalent & I'union des

boules J,cx, B(,a).

Le nerf d’un recouvrement des données est tres utilisé pour la visualisation et I’exploration des données.
Cette idée est mise en pratique par le célebre algorithme Mapper, voir Figure 3.3.

80n n’a quasiment jamais acces a cette information en pratique
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Algorithm 1 The Mapper algorithm

Input: A data set X with a metric or a dissimilarity measure between data points, a function f: X — R {or ), and
a cover % of f{X).

for each U € %, decompose ! (U} into clusters Cyy 1, -+ . Cyr g,

Compute the nerve of the cover of X defined by the Cy .-+, Cpry, U € %

Output: a simplicial complex, the nerve (often a graph for well-chosen covers — easy to visualize):

- a vertex vy ; for each cluster Cy ;,

- an edge between vy ; and vy ; i Cy ;N Cyr j # 0

Figure 3.3: Algorithme Mapper, illustration provenant de [7]

3.4.2 Apprendre ’homologie

Dans cette section, nous présentons un résultat garantissant, sous des hypotheses de régularité, que les
nombres de Betti d’un espace peuvent se calculer a partir du complexe de Cech.

Théoréme 3.4.5. Soit M C R¢ une sous-variété lisse’ de R?, de dimension m < d. On suppose que, pour
certains « € (0,1) et R > 0, la variété M posséde un a-reach d’au moins R : reach,(M) > R.
Soit un échantillon de points X,, = {x1,...,x,} C M qui est e-proche de M en distance de Hausdorff :

R
=dyg(M,X,)) < ——.
9 H( 9 n) =5 + 4/0&2
Alors, pour tout r € [4e/a? R — 3¢] et tout k = 0,...,m, les nombres de Betti de M coincident avec les

nombres de Betti du compleze de Cech Cech,(X,) construit & partir des données :
Vk=0,...,m, bi(Cech.(X,))=bi(M).

Ce résultat garantit que ce que Pon calcule en pratique & partir du complexe de Cech approche les
véritables nombres de Betti du support des données.
En pratique, certaines difficultés apparaissent, parmi lesquelles :

1. L’hypothese sur le reach de la variété peut étre assez restrictive.

2. Construire le complexe de Cech est compliqué, car la condition d’intersection des boules (vide ou
contractile) est difficile & vérifier.

3. Le choix du parametre r peut étre délicat.
4. L’instabilité aux outliers (voir Figure 3.4).

Bien que des méthodes aient été développées pour traiter ce type de problématiques, nous verrons dans
la section suivante une autre approche, basée sur un autre invariant topologique, I’homologie persistante, qui
permet également de pallier ce type de difficultés.

7c’est-a-dire de classe C®
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Figure 10: The effect of outliers on the sublevel sets of distance functions. Adding just a few
outliers to a point cloud may dramatically change its distance function and the topology of its
offsets.

Figure 3.4: Illustration provenant de [7]

3.4.3 Homologie persistante

Définitions

On commence par définir la notion de filtration avant de donner celle de module de persistance.
Définition 3.4.6 (Filtration).

e Une filtration d’un complexe simplicial K est une famille de sous-complexes simpliciaux (K,.).c1 avec
T CR, tels que si 7 <7’ alors K, C K,» et K =J,cp K.

e Une filtration d’un espace topologique X est une famille de sous-espaces topologiques (X,.).cr avec
TCR,telsquesir <7’ alors X, C X,» et X = UTeT X,

Un exemple tres important de filtration est la filtration par les sous-niveaux d’une fonction. Si f: X — R
est une fonction, alors la famille

(fH((=00,7]) e

est automatiquement une filtration.
Exercice : Le prouver.

Dans la pratique, on veut des filtrations sur des données X,, = {z1,...,2,}. Il se trouve que la famille
des complexes de Cech (Cech,(X,))r>0 est une filtration, de méme que la famille des complexes de Rips

(Ripsr(Xn))rzo.

Dans ces deux cas, le parametre r s’interprete tres naturellement comme un parametre d’échelle : pour
r ~ 0, on observe la structure locale, "microscopique”, tandis que pour r >> 1, on observe la structure globale.

Exercice : Prouver que les familles des complexes de Cech et des complexes de Rips sont des filtrations.
On définit maintenant la notion de module de persistance.

Définition 3.4.7 (Module de persistance). Un module de persistance est la donnée d’une famille d’espaces
vectoriels® (V.),er indexée par T C R, ainsi que d'une famille d’applications linéaires

(l: : ‘/7 — ‘/s)rgw s E T7

vérifiant la loi de composition
Foll =17, r<s<t,

8Espaces vectoriels sur le corps Z)27
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avec [ = Id.

Notez que I'ensemble des parametres T C R correspond toujours, en pratique, a celui d’une filtration
(KT)T'ET'

Sous de bonnes hypotheses”, tout module de persistance se décompose en somme directe de modules
élémentaires appelés modules d’intervalle.

Un module d’intervalle est défini de la maniére suivante : I'ensemble des parametres 7" est un intervalle
T = [b,d) C R, la famille des espaces vectoriels est constituée uniquement du corps de base

Vrepd), V,=27/2Z,

et les applications linéaires sont toutes I'identité. On peut aussi prolonger le module en l'indexant sur R
entier, et poser V,. = {0} si r ¢ [b,d). On peut alors représenter le module ainsi :

= 0—= 222 — - = 1L)2L—0— -

Les fleches entre les zéros représentent ’application nulle, et les fleches entre les Z/2Z représentent ’application
identité. Le début de I'intervalle, noté b pour ”birth”, représente I’apparition d’'une caractéristique topologique
dans la filtration a cette échelle, et la fin de I'intervalle, notée d, représente sa disparition.

La décomposition d’'un module de persistance en une somme directe de modules d’intervalles joue un
role analogue a la réduction d’un endomorphisme en algebre linéaire, ol ’'on met une matrice sous forme
diagonale par blocs.

Deés qu’un module est décomposable en modules d’intervalles, on peut définir son code-barres de persis-
tance comme ’ensemble des intervalles intervenant dans cette décomposition.

Puisque chaque intervalle peut se représenter comme un couple de points (b, d), on définit le diagramme
de persistance comme 'union de tous ces couples avec la diagonale

{(z,y) eR? [z =y}.
Il s’agit donc d’un sous-ensemble du demi-quadrant supérieur du plan, voir Figure 3.5.

On pourrait se demander ce qui se passe si un module de persistance peut étre décomposé de plusieurs
facons différentes en modules d’intervalles. La réponse est un résultat qui assure que le diagramme de

persistance est indépendant de la décomposition choisie ; nous renvoyons le lecteur & [7] pour plus de détails.

Interprétation et exemples

Dans cette section, nous esquissons la construction des diagrammes de persistance en pratique sur deux
exemples.

9que lon passera sous silence ici
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y death

1 " hirth

Figure 11: The persistence barcode and the persistence diagram of a function f : [0,1] = R.

Figure 3.5: Illustration provenant de [7]

En pratique, le calcul du diagramme de persistance se fait de la maniére suivante. On part d’une filtration

sur les données, treés souvent la filtration de Rips (voir Figure 3.6) ou une filtration par sous-niveaux d’une
fonction (voir Figure 3.5).
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Figure 13: The sublevel set filtration of the distance function to a point cloud and the “construction™
of its persistence barcode as the radius of balls increases.

Figure 3.6: Illustration provenant de [7]

Prenons le cas de la filtration de Rips. Pour chaque r > 0, on fait grossir des boules de rayon r centrées
en chaque point. Au début, pour des r treés petits, les boules ne s’intersectent pas : cela donne autant de
boules que de points, et donc autant de segments initiaux que de points.

On laisse ensuite ces boules grandir avec r, ainsi que les segments. Des que deux boules commencent a
s’intersecter, on arréte 'un des segments correspondants (par convention, celui le plus en haut dans la Figure
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3.6). On poursuit ce processus jusqu'a ce que r devienne si grand que toutes les boules s’intersectent : il ne
restera alors plus qu'un seul segment qui ne s’arrétera jamais.

Si 'on regarde ce qui se passe a des échelles intermédiaires, on enregistre également l'apparition et la
disparition des 1-cycles, correspondant a 'image c) de la Figure 3.6. Lorsque des boules (B;); s’intersectent
de maniére cyclique'®, on en garde trace. Du point de vue de ’homologie, il s’agit des 1-cycles.

Dans cet exemple, puisque 'on est dans R2, il n’est pas nécessaire de considérer des k-cycles pour k > 1.
En général, on peut aller plus loin : par exemple, pour des points sur une sphere S C R3, lorsque les boules
grossissent, on observe d’abord les composantes connexes (Hy), puis les cycles (Hy), puis le trou de la sphére
(la cavité a l'intérieur), correspondant au 2-cycle.

Dans notre exemple, il y a Papparition de deux 1l-cycles a 'étape c¢), que 'on représente par les barres
bleues. Lorsque 1'un des cycles disparait, on arréte I'un des deux segments, suivant le méme principe que
pour les O-cycles.

Stabilité et bruit

Rappelons 'idée générale. On dispose de données que I’on suppose supportées sur une sous-variété M C RP.
L’analyse topologique des données permet d’apprendre certaines propriétés topologiques de cette variété.
Ceci constitue le cadre théorique ”parfait”.

Dans la pratique, les données sont bruitées : elles ne vivent donc pas ezractement sur une sous-variété,
mais plutét dans le voisinage d’une sous-variété''. Pour que les méthodes soient utiles en pratique, il faut
qu’elles soient robustes'?, c’est-a-dire que méme avec des données bruitées, 'information topologique soit
récupérable.

Nous allons voir dans cette section que c’est le cas des diagrammes de persistance en analyse topologique
des données.

Afin de quantifier la stabilité, il est nécessaire de disposer de deux notions de distance : 'une entre le
nuage de points et la variété sous-jacente!?, et I'autre entre les diagrammes de persistance. L’objectif est de
formuler des résultats généraux de la forme : si X et Y sont proches, alors les diagrammes de persistance
dgm(X) et dgm(Y') sont proches.

Définition 3.4.8 (Bottleneck distance). La bottleneck distance entre deux diagrammes de persistance dgm;
et dgmeo est définie par

dp(dgmy,dgms) :=inf max ||p — qllco,
m (p,q)€m

ol 'infimum est pris sur tous les matchings m C dgmy x dgme entre les diagrammes dgm; et dgms.

Par définition, un matching entre deux diagrammes dgm, et dgms est un sous-ensemble m C dgmy x dgme
tel que tous les points de dgmy \ {(z,x) |z € R} et tous les points de dgms \ {(x,z) |z € R} apparaissent
exactement une fois dans m, voir Figure 3.7.

10¢%est-a-dire BN B;11 #Ppouri=1,...,n—1let BN By #0
11est le cadre de ’hypothese de la variété : variété + bruit.
120n parle aussi de stabilité

13dont les données représentent une version bruitée et discrétisée
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d+h

b

Figure 3.7: Exemple de matching entre deux diagrammes, illustration provenant de [7]

La bottleneck distance est une distance de type L qui mesure ’écart dans le pire des cas.
Exercice : Montrer que la bottleneck distance est bien une distance.

On introduit maintenant la distance de Hausdorff pour mesurer I’écart entre des formes.

Définition 3.4.9 (Distance de Hausdorff). La distance de Hausdorff entre deux ensembles A, B C R? est le
plus petit € tel que chacun des ensembles soit contenu dans le e-voisinage de I'autre :

d(A,B) :=inf{e > 0| A C B et B C A%},

avec
A® = {z € RY|dist(z, A) < e}, dist(z, A) := irelg |l — al|2-
a

Exercice : Montrer que la distance de Hausdorff est bien une distance.

On peut alors énoncer deux résultats fondamentaux de stabilité.

Théoréme 3.4.10. Soient f,g: M — R deux fonctions réguliéres'* sur un espace topologique M, et soient
dgmy(f) et dgmy(g) les diagrammes de persistance associés pour un certain k € N. Alors

dy (dgmi(f), dgmi(9)) < [If = glloo-

Théoréme 3.4.11. Soient X, Y C RP deux sous-ensembles compacts, et soient Filt(X) et Filt(Y) les filtra-
tions de Rips ou de Cech associées. Alors

dy (dgm(Filt(X)), dgm(Filt(Y))) < 2du (X,Y),

ot dgm(Filt(X)) désigne le diagramme de persistance construit a partir de la filtration considérée.

14 Certaines notions de régularité sont omises ici
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Ces théoremes garantissent que si les données X sont une version bruitée d’une certaine variété sous-
jacente, le diagramme de persistance calculé & partir des données ne peut pas étre trop éloigné (en bottleneck

distance) du diagramme de la vraie variété.
En pratique, cela permet d’ignorer les points proches de la diagonale en dessous d’un certain seuil dans

le diagramme, voir Figure 3.8.

Persistence diagram

Dexath

Figure 18: Persistence diagram and confidence region for the persistence diagram of a MBP.

Figure 3.8: Illustration provenant de [7]



Chapter 4

Estimation statistique en contexte
géomeétrique

4.1 Tester 'hypotheése de la variété

Dans cette section, on considere 'hypothese de la variété au sens statistique, et on va donc présenter un
exemple de construction d’un test statistique permettant de trancher si les données observées sont ou non
supportées sur une variété.

Dans la littérature, les premiers & construire un tel test sont Fefferman, Mitter et Narayanan dans [10].
Dans cette section, on présente un test un peu plus simple, mais utilisé récemment, voir [17].

Rappelons que 'on part de données X1, ---,X,, € RP. Le terme "hypothese de la variété” regroupe en
fait deux hypotheses de nature tres différente.

La premieére est que I’on suppose que les données sont concentrées sur une sous-variété M C RP de
dimension plus petite d < D.

La seconde est que cette variété est une vraie variété au sens de la géométrie riemannienne, et donc qu’elle
est lisse.

Le premier point est le plus important en pratique, et c’est celui pour lequel on va proposer un test.

Considérons donc un jeu de données X1, --- , X,, € RP. On se fixe un k € N, et pour tout X;, on considere
I’ensemble de ses k plus proches voisins

Ne(X;) = {X;,,---,X;, } CRP.

Afin de réduire en partie le bruit, on recentre chaque X; € Nj(X;) par rapport aux autres points de ce
voisinage :

Xj = Xj—

k
> X,
=1

On fait alors une analyse en composantes principales’ (PCA) pour les X j» et on récupere donc D valeurs
propres

=

A1 > A= > Ap

mesurant chacune la variance dans une direction propre.
On se donne un seuil 7 € (0,1)? et on définit alors la dimension locale comme étant le plus petit d; tel
que

di D
DAZTY A
j=1 j=1

IDans cette configuration, on parle de local PCA.
2Typiquement 0,9.

45
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Ce nombre d; dépend de X, c’est pourquoi il est dit local. 1l caractérise une notion de dimension, car il
encode le nombre de directions indépendantes dans lesquelles les données varient de fagon significative, au
voisinage de X;.

On répete cette procédure au voisinage de chaque X; dans le jeu de données, et on obtient donc n
dimensions locales dy,--- ,d, € [1, D].

Si 'hypothese de la variété est vraie, alors tous les d; doivent simultanément :

e étre tres proches de la méme valeur (dimension constante),
e et cette valeur doit étre significativement plus petite que D.

En se fixant a priori un seuil de variabilité des dimensions locales, ainsi qu’un seuil d’écart & D, cela
permet de définir un test qui rejette, ou non, ’hypothése de la variété.

4.2 Loi des grands nombre pour les espaces a courbure négative
ou nulle

Dans cette section, on se place dans le cadre théorique ou ’on suppose connue la géométrie, et I’on cherche
a établir des garanties de convergence a priori. Que la géométrie soit supposée connue signifie que l'on va
imaginer disposer d'un oracle nous donnant directement acces, notamment, aux géodésiques®.
On va supposer que les données X, ---, X,, prennent leurs valeurs dans un espace métrique (M,d) a
courbure sectionnelle non positive, donc vérifiant la propriété C AT(0) telle qu’introduite & la section 2.2.2.
L’objectif est d’étre capable de démontrer, dans ce cadre, le fondement méme de la théorie des statistiques

(et des probabilités), & savoir la loi des grands nombres.

4.2.1 Moyenne de Fréchet et moyenne inductive

Rappelons que la loi des grands nombres affirme que, si les données Xi,---, X, sont indépendantes et
identiquement distribuées, et si de plus X; admet un premier moment fini, E[X;] < oo, alors la moyenne
empirique converge vers la moyenne théorique :

n

1
— E X; — E[Xy],
n = n—00

ol évidemment le mode de convergence? reste & préciser.

Ici, dans le cadre ou X1, -+ , X, € M, la premiere difficulté est que la moyenne empirique n’est pas définie
: en effet, on n’est plus dans le cadre d’un espace linéaire, et il n’a donc plus de sens de prendre une somme !

Il va donc falloir redéfinir la notion de moyenne, de fagon & ce que la moyenne de points dans M soit un
point de M.

Etant donné que les X; sont souvent obtenus comme des vecteurs de R? > M, on pourrait vouloir
simplement calculer la moyenne dans R” : il s’agit du point de vue extrinséque. Cependant, cela a pour
inconvénient que la moyenne de points de M ne sera pas forcément un point de M, ce qui est génant, car
le fait que les points soient dans M est une information tres importante que ’on ne veut pas perdre. En
particulier, la notion de moyenne encode l'idée qu’elle doit étre représentative des données. Si on a une
moyenne qui perd I'information d’étre dans M, cela contredit completement cette idée. Pour le dire de fagon
plus concrete : si les données sont des images de chats, et que 'on considére M comme la variété des images
de chats, alors il n’aurait pas de sens de dire que la moyenne de ces images est une image qui n’est pas un
chat (pas dans M).

Afin de donner du sens a la notion de moyenne de n points x1,- - ,z, dans un espace métrique (M, d),
on cherche une formulation de la moyenne dans R¢ qui ne fasse pas intervenir la notion de linéarité. Ainsi,

3Qui, évidemment, dans la pratique, ne seront que approximées.
4En probabilité, presque stirement, ...
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la définition sera bien une extension de la moyenne usuelle. Pour cela, on se souvient que la moyenne est le
minimiseur du probleme des moindres carrés :

*sz = argmland p,x2
pER?

Exercice : Redémontrer cette identité.

Le probleme des moindres carrés ne fait intervenir que la notion de distance ; il a donc du sens dans
n’importe quel espace métrique général. C’est ce que I'on appelle une moyenne de Fréchet.

Définition 4.2.1 (Moyenne de Fréchet). Soit (M, d) un espace métrique. On définit :

e [’ensemble des moyennes de Fréchet de n points x1,:-- ,x, € M comme étant ’ensemble

argmin — Z d(p,x;)?
peM T

e L’ensemble des moyennes de Fréchet d’une mesure de probabilité p sur M comme étant I’ensemble

argminE [d(p, X)?], X ~ p.
peEM

Il s’agit bien d’un ensemble : en effet, il peut y avoir plusieurs moyennes de Fréchet. Par exemple, sur la
sphere S?, tous les points de I’équateur sont des moyennes de Fréchet des poles sud et nord.

Si l'on est sur un espace non compact, il peut évidemment y avoir des mesures de probabilité qui
n’admettent pas de moyenne : c’est déja le cas dans R avec la loi de Cauchy. Pour un espace métrique
général, cela peut également étre le cas pour la moyenne entre deux points si I'espace possede des ”trous”.
Par exemple, si I'on considere R \ {0} muni de la distance usuelle, alors les points —1 et +1 n’ont pas de
moyenne, car la fonctionnelle de Fréchet admet un infimum non atteint (atteint en 0 ¢ R\ {0}).

Dans le cas d’'un espace géodésique et complet, le probleme admet toujours au moins un minimiseur.

Un autre moyen de définir la moyenne de n points dans un espace géodésique consiste a remarquer

'identité suivante dans R® :
1 1
fza:l— <1—) n—lzxﬁ_ —Zp.
Si 'on pose S,, = % doi, x;, Videntité se rééerit

1 1
S, (1-7) S+ o
n n

Or, la fonction t € [0,1] — (1 — t)x + ty est exactement le segment de droite reliant = & y. Par conséquent,
l'identité précédente signifie que S,, est le point situé a distance 1/n de S,,_; sur le segment reliant S, _; a
2. Cette formulation ne fait intervenir que la notion de géodésique (segment de droite dans le cas euclidien)
et peut donc étre généralisée aux espaces métriques généraux.

Définition 4.2.2 (Moyenne inductive). Soit (M, d) un espace géodésique tel que, entre tout point x et y, il
existe une unique géodésique v, , : [0,1] = M avec 7, 4(0) = = et 7, (1) = y. Soient xq,--- ,z, € M. On
définit leur moyenne inductive S,, de fagon récurrente :

L4 Sl = T,

® S, =75, 1.2n (%)

Exercice : Montrer que la moyenne inductive dépend de 'ordre des données z;. En déduire qu’elle ne
coincide pas nécessairement avec la moyenne de Fréchet.
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4.2.2 Loi des grands nombres pour les espaces CAT(0)

Maintenant que ’on dispose de notions de moyenne, on peut formuler une loi des grands nombres, et ’objectif
sera de la démontrer dans le cas d’un espace vérifiant la propriété CAT(0). On va ici la démontrer pour la
moyenne inductive, mais le résultat est également vrai pour la moyenne de Fréchet.

Théoréme 4.2.3. Soit (M,d) un espace CAT(0) et Xy,---, X, des variables i.i.d. de loi i admettant une
unique moyenne de Fréchet m. Soit S, la moyenne inductive. Alors on a

E [d(m, Sn)?] < %E [d(m, X1)?] .

En particulier, la moyenne inductive S, converge dans L? vers la moyenne théorique de Fréchet m.

Avant de passer a la preuve, on a besoin de démontrer 'unicité de la moyenne de Fréchet dans les espaces
CAT(0), ainsi que l'inégalité de la variance.

Lemme 4.2.4. [Unicité de la moyenne de Fréchet en CAT(0)] Soit (M,d) un espace CAT(0) et X une
variable aléatoire de loi . On suppose que pour un certain xy € M, on ait E[d(xq, X)] < co. Alors X admet
une unique moyenne de Fréchet.

Proof. On suit la preuve de Sturm [18, Prop. 4.3]. La premiére remarque est que la définition de la moyenne
de Fréchet fait intervenir le carré de la distance (norme L?), alors que I’hypotheése porte sur la distance
(norme L'). On commence donc par modifier la fonctionnelle objectif en observant que les minimiseurs de

2+ Eld(z, X)?]
sont les mémes (quand ils existent) que ceux de
Fy(z) = ]E[d(za X)2 - d(y7 X)2]7

ot y € M est fixé. En effet, F,(2) — F(z) = E[d(y/, X)? — d(y, X)?] ne dépend pas de z.

On montre alors que F,, est fortement convexe et continue, ce qui, d’apres ’analyse convexe classique,
implique existence et unicité du minimiseur.

Premierement, Iy, est continue car

|Fy(2) — Fy ()] < Eld(2, X)* - d(«/, X)?|.

Deuxieémement, grace a la forte convexité géodésique de z + d(z,x)? (voir Définition 2.2.6), pour zg, 21 €
M et v:[0,1] = M la géodésique les reliant, on a

F,((1)) = Eld((t), X)* - d(y, X)’]
< (1= DE[(1(0), X)? — d(y, X)?] + tE[d(v(1), X)* — d(y, X)?] — t(1 — t)d(20, 21)?
— (1= )F, (7(0)) + tF, (7(1)) — t(1 — )d(z0,21)",

ce qui établit la forte convexité et termine la preuve. O

Exercice : Montrer que si pour un certain zp € M, E[d(zo,X)] < oo, alors pour tout =z € M,
Eld(z, X)] < oo.

Lemme 4.2.5. [Inégalité de la variance] Soit (M,d) un espace CAT(0) et X une variable aléatoire de loi
. On note m € M sa moyenne de Fréchet. Alors, pour tout z € M,

d(z,m)? < E[d(z, X)? — d(m, X)?].
Proof. On suit la preuve de Sturm [18, Prop. 4.4]. Pour y = m, la fonctionnelle

Fu(2) :=E[d(z, X)? — d(m, X)?
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est fortement convexe le long de la géodésique + : [0, 1] — M reliant m a z, donnant
Fn(v(t) < (1 = ) Fn(7(0)) + tFn((1)) = t(1 = t)d(m, 2)*.
Or, F,,(7(0)) =0 et F,(v(1)) = E[d(z, X)? — d(m, X)?]. Ainsi,
0 < tE[d(z, X)? — d(m, X)?] — t(1 — t)d(m, 2)?.
En divisant par t et laissant t — 0, on obtient I'inégalité de la variance. O

Exercice : Montrer que dans R?, I'inégalité de la variance est vraie et devient une égalité. Cela est-il
cohérent avec la notion d’espace CAT(0) ?

Preuve du théoréme 4.2.3. On suit la preuve de Sturm [18, Théoreéme 4.7]. On note
o? = E[d(m, X1)?.

La preuve se fait par récurrence sur n > 1. Pour n = 1, I'inégalité est une égalité. Supposons qu’elle soit
vraie pour n et montrons-la pour n 4+ 1 :

E[d(mﬂs?ﬂ*l)z} E d(ma’ysn,)ﬂﬁd(%ﬂ))?

n 2 1 2 n 2
< o 1]E[d(m75n) 1+ mE[d(m7X7L+1) ] — WE[d(quSn) ]
n 2 1 2 n 2 2

<nil - (n:1)2) Eld(m, Sn)"] + (n—li—l B (n:1)2> Bld(m, X1

2
( n ) Eld(m, 5,)?] + Efd(m, X,)?

n+1

1
<
“n+1

(n+1)?

E[d(m, X1)?%],

ou la premiere inégalité provient de la forte convexité en CAT(0), la seconde de I'inégalité de la variance
(Lemme 4.2.5) et la derniére de 'hypothese de récurrence. O

4.2.3 Normalité asymptotique de la moyenne de Fréchet empirique, ou BP-TCL

Le terme de BP-TCL vient des auteurs Bhattacharya et Patrangenaru, qui ont largement contribué a développer
ces résultats [5].

A la section précédente, on a vu la notion de loi des grands nombres pour les espaces métriques, et en
particulier on a prouvé une loi des grands nombres L? pour la moyenne inductive dans les espaces CAT(0).

L’étape suivante dans la théorie des probabilités apres la loi des grands nombres est évidemment le
théoréme central limite (TCL). En statistique, la loi des grands nombres correspond & établir la consistance
de lestimateur de la moyenne, tandis que le TCL correspond a la normalité asymptotique de cet estimateur.

La question est donc : peut-on établir un TCL, c’est-a-dire une normalité asymptotique, dans le cadre
qui nous occupe ? Dans cette section, on va esquisser des arguments en faveur d’une réponse positive pour
la moyenne empirique de Fréchet dans le cadre d’une variété riemannienne.

Soit (M, g) une variété riemannienne, et Xy, -+, X,, des variables aléatoires i.i.d. & valeurs dans M, de
loi . On suppose que p admet une unique moyenne de Fréchet m € M.

Soit S,, 1a® moyenne de Fréchet empirique des données X1, ---,X,,. La loi des grands nombres pour les
moyennes de Fréchet dit que S,, converge® vers la moyenne théorique m. Le but du TCL est d’étudier 1’ordre

5sous de bonnes hypotheses, elle est unique
6p.s., en probabilité ou en L2
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des fluctuations ainsi que leur forme” entre S, et m. Le probleme est que la fluctuation S,, —m n’a pas de
sens directement dans M ; on doit donc passer en coordonnées pour écrire ces fluctuations.

On se place donc dans un voisinage V' C M de m, et on considere les coordonnées normales centrées en m
(voir Section 2.1.3). On a ainsi 'application exponentielle définie sur un ouvert U contenant zéro de I’espace
tangent T}, M ~ R% en m :

exp,, U Cc Ty =V C M,

et sa réciproque, appelée logarithme au point m :
Log,,:VCM—=UCTyM,

qui associe a un point de la variété un vecteur de I’espace tangent. C’est donc le logarithme qui nous permet
de remonter les points sur l’espace tangent, et 'on étudie ainsi les fluctuations

Log,,(S,) — Log,,(m) = Log,,,(S,) € T, =~ R4,

Une fois cela écrit en coordonnées, la moyenne de Fréchet devient un m-estimateur classique, et sa
normalité asymptotique se déduit de I’analyse usuelle des M-estimateurs.

Soit
1 n
= - Z d(pa X 2
n-
=1
la fonctionnelle empirique, dont S, est le minimiseur, et
F(2) = E[d(p, X1)?]

la fonctionnelle de Fréchet, dont m est le minimiseur.
_ Dans la carte exponentielle, on écrit le développement de Taylor de VF,, au voisinage de m, en notant
Sy, := Log,,,(Sy,) et m := Log,, (m)? :

VFE,(S,) = VF,(m) + (S, — m)V2F,(m) + Reste.

Comme S,, est minimiseur, on obtient :

Z Vd(m, X;) Z V2d( 2t Reste.
En multipliant par v/n :
1 < ~ 1 &
- = ; Vd(m, X;)? + (ﬁ(sn - m)) - ; V2d(m, X;)? + Reste.

L’idée est que la loi des grands nombres usuelle” assure la convergence presque siire de

1 n

=3 " V2d(m, X;)* = E[Vd(m, X1)?],

n L

et que les hypotheses géométriques (bornitude des courbures sectionnelles) permettent de controler le reste,
qui converge vers zéro en probabilité.
On en déduit donc le BP-TCL :

V(S =) = N (0,471 C(Ah ),

avec C' la matrice de covariance de Vd(m, X1)? et A = E[V2d(m, X1)?].

Notons que seule la matrice C' encode de I'information sur la loi p, tandis que A encode uniquement la
géométrie de la variété. Dans le cas euclidien, la Hessienne de la distance au carré est constante, donc seul
le terme de covariance apparait, conformément au TCL classique.

7Gaussienne
80n a bien siir 7 = 0, mais I’écrire facilite le lien avec les formules de Taylor en cadre euclidien
9Tout est écrit en coordonnées, donc on est dans R¢
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4.3 Illustration : barycentres de Wasserstein

Dans cette section, l'objectif est d’étre capable de faire des moyennes d’images.

AVERAGING OF IMAGES

2-WASSERSTEIN MEAN

\\.“_.J
Figure 4.1: Illustration provenant de [9]

Une image est représentée comme un tableau de nombres, les pixels, codant les niveaux de gris. C’est
donc un vecteur de R” avec D le nombre de pixels.

Une premiere approche trés naive consisterait & faire la moyenne linéaire dans R”, ce qui revient &
superposer les images. Cette méthode ne fonctionne pas correctement (voir figure ci-dessus).

Une approche plus fructueuse est la suivante : une image peut étre représentée comme une mesure de
probabilité.

Exercice : Une image est une fonction
I:{1,---,n} x{1,--- ,m} = Ry,

ou I(i,j) représente I'intensité de niveau de gris' du pixel en position (i, j). Expliquez comment on peut
représenter cela de fagon équivalente sous forme d’une mesure de probabilité.

On peut alors définir la moyenne d’images comme une moyenne de Fréchet pour une certaine distance
bien choisie sur ’espace des mesures de probabilité. En pratique, la distance appropriée est la distance de
Wasserstein.

Etant données u et v, deux lois de probabilité sur un espace métrique (M, d), leur distance de Wasser-
stein est définie comme suit. On prend X ~ p et Y ~ v deux variables aléatoires, non nécessairement
indépendantes. Le couple (X,Y) est appelé couplage de u et v''. La distance de Wasserstein est alors
Iinfimum sur tous les couplages :

W, v) == \/XNLngle[d(X, Y)2).

(I1 s’agit ici de la distance Wy, mais on peut définir de fagon similaire W), pour tout p > 1.)

10Dans le cas du systéme de couleur RGB, on a trois fonctions pour chaque niveau d’intensité de Rouge, Vert et Bleu.
117] existe toujours au moins un couplage, par exemple le couplage trivial oti X et Y sont indépendants.
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Exercice : Montrer que W5 est bien une distance.

On définit alors la moyenne entre des images comme la moyenne de Fréchet pour la distance W5 entre
leur représentation sous forme de probabilité.

Sipig,- -, pup sont des lois de probabilité et A1, --- , A, des poids tels que A\; + - -+ A, = 1, leur moyenne
de Wasserstein est définie comme la moyenne de Fréchet :

n
argmin Z NiWa(p, p:)?.
peM T

On termine cette section par quelques illustrations comparant la moyenne naive et la moyenne de Wasser-
stein.

En figure 4.1, la moyenne avec des poids uniformes de quatre dessins de papillons est représentée. On
voit que la moyenne euclidienne n’est qu'une superposition, qui ne ressemble donc plus a un papillon, tandis
que la moyenne de Wasserstein, bien que légerement floue, capture réellement l'idée des images dont elle est
la moyenne : autrement dit, cela reste un papillon.

En figure 4.2, on considere des images des lettres A, B, C et D, et on fait des moyennes de Wasserstein
en faisant varier les poids par pas de 1/4. Dans chaque coin, on met une masse de 1 pour une image et on
retrouve donc la lettre correspondante, tandis que pour I'image centrale, on met des poids uniformes égaux
a 1/4. Le point central représente donc bien la moyenne des quatre lettres. On remarquera qu’en faisant
varier les poids, on obtient des déformations continues des images.

Figure 4.2: Source GeomLoss documentation (kernel-operations.io) [11]
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