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2.1.6 Opérateur de Laplace-Beltrami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Introduction

1.1 Statistique en grande dimension

1.1.1 Exemple introductif

Au cours des dernières années, l’essor des données de grande dimension a confronté les statistiques et le
machine learning à un défi majeur : le fléau de la dimension.

Ce terme désigne le phénomène selon lequel la plupart des algorithmes classiques voient leur vitesse de
convergence devenir impraticable lorsque la dimension des données augmente fortement, comme c’est le cas,
par exemple, pour les images, représentées par des vecteurs comportant plusieurs millions de composantes.

Prenons l’exemple jouet de classification suivant1 : on prend la base de données d’images Fashion-MNIST,
composée de 70 000 images de 28 × 28 = 784 pixels avec des niveaux de gris allant de 0 à 255 (soit 8 bits).
Il s’agit donc de vecteurs éléments de l’ensemble

[[0, 255]]784 ⊂ R784,

qui peut être considéré comme un espace de grande dimension, bien que dans la pratique les images de plus
haute résolution se représentent plutôt comme des vecteurs de dimension de l’ordre de plusieurs millions.

Figure 1.1: Fashion-MNIST

Parmi ces images, il y a 10 classes différentes de vêtements (t-shirt, pantalon, etc.), et le but est de
classifier ces images, c’est-à-dire d’assigner à chacune d’entre elles son label (le numéro de l’item auquel elle
appartient). Pour cela, parmi les 70 000 images, on dispose de 60 000 qui sont déjà étiquetées (par des
humains), et le but est d’apprendre à partir de cet ensemble d’entrâınement afin de généraliser correctement,
c’est-à-dire de prédire le label des images qui n’avaient pas été étiquetées.

1Merci à David Tewodrose à qui j’emprunte cet exemple !
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Un algorithme réalisant cette tâche est le suivant. On fixeN, k ∈ N, puis on divise l’ensemble d’entrâınement
en N sous-ensembles (les batches) B1, . . . , BN . Étant donnée une image x ∈ R784, on calcule pour chaque
batch Bi, i = 1, . . . , N , ses k plus proches voisins dans le batch Bi, c’est-à-dire les k points dans Bi qui
sont les plus proches de x pour la distance euclidienne. On regarde alors, pour chacun de ces k plus proches
voisins, quel est son label, c’est-à-dire sa classe de vêtement. Pour ce batch Bi donné, on attribue ensuite à
x le label majoritaire parmi les k plus proches voisins dans Bi. On obtient donc N labels, un pour chaque
batch, et on attribue finalement à x le label majoritaire parmi ceux-ci.

Le problème de la grande dimension surgit justement du calcul des distances euclidiennes dans RD pour
D grand (ici D = 784). En effet, lorsque la dimension est grande, ”tous les points se retrouvent éloignés”.
Dit de façon plus rigoureuse, si on considère l’hypercube [0, 1]D et qu’on le divise en petits hypercubes de
côté 10−m, alors on se retrouve avec 10mD hypercubes, soit un nombre gigantesque dès lors que D est grand.
Par exemple, ici pour m = 1 et D = 784, on obtient 10784 hypercubes, soit beaucoup, beaucoup plus que le
nombre de données 7× 104. Cela signifie que deux données différentes se trouveront quasi systématiquement
dans des hypercubes différents et seront donc toujours éloignées. Ce phénomène très important est connu
sous le nom de malédiction de la dimension.

1.1.2 Le phénomène de concentration de la mesure

En grande dimension, on ne voit que des événements typiques : c’est ce que l’on nomme la concentration de
la mesure.

La loi des grands nombres est une instanciation de ce phénomène. Prenons un moment pour l’illustrer.
Si l’on a une suite infinie de variables aléatoires X1, X2, . . . , Xn, . . . qui sont iid et intégrables (E[|X1|] <∞),
alors la loi des grands nombres affirme que la moyenne empirique converge presque sûrement vers l’espérance,
c’est-à-dire la moyenne théorique :

1

n

n∑
i=1

Xi −→
n→∞

E[X1] presque sûrement.

Cela signifie que lorsque le nombre de données augmente, c’est-à-dire quand n augmente, le nombre de
possibilités augmente2, mais le nombre de possibilités que l’on peut effectivement observer diminue, jusqu’à
ne plus pouvoir observer qu’un seul événement à la limite où l’on a accès à la suite infinie des données3. Dans
le cas où ce que l’on observe est la moyenne empirique, l’unique valeur effectivement observable à la limite
est la moyenne théorique E[X1], comme l’affirme la loi des grands nombres.

Dit autrement, lorsque la taille de l’échantillon augmente, les valeurs des observables effectives se concen-
trent autour d’un point. C’est exactement ce que l’on nomme le phénomène de concentration de la mesure,
et cela dépasse largement la loi des grands nombres.

En effet, de façon générale, une observable est une fonction Kn-Lipschitz des données : fn(X1, . . . , Xn).
Il s’agit donc d’une fonction4

fn : En → R

vérifiant

|fn(X1, . . . , Xn)− fn(X
′
1, . . . , X

′
n)| ≤ Kn

n∑
i=1

∥Xi −X ′
i∥ ,

où E dénote l’ensemble où prennent leurs valeurs les variables aléatoires, et || · || une norme sur cet ensemble5.
Notez bien que la constante Kn est autorisée à dépendre de n.

Exercice : La fonction moyenne empirique

(x1, . . . , xn) 7→
1

n

n∑
i=1

xi

2et augmente exponentiellement, par exemple pour des Bernoulli, le nombre de possibilités double à chaque nouvelle donnée
3ce qui est évidemment impossible mais peut être conçu comme une vue de l’esprit
4en réalité une suite de fonctions, mais pour alléger la notation, on n’écrit pas toujours l’indice n
5qui sera donc souvent Rd muni de la norme euclidienne
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est-elle Lipschitz ? Si oui, quelle est sa constante ?

La concentration de la mesure est alors la propriété que l’observable f(X1, . . . , Xn) se concentre autour
de sa moyenne avec une certaine vitesse α : (0,∞) → (0,∞), au sens où pour tout ε > 0,

P
(∣∣f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]

∣∣ ≥ ε
)
≤ α

( ε
K

)
.

Exercice : Dans le cas où les Xi sont iid à valeurs dans [a, b] ⊂ R et que l’observable est la moyenne
empirique, déterminer la fonction de concentration α : (0,∞) → (0,∞) correspondante.

Que signifie l’hypothèse que l’observable soit Lipschitz ? Cela signifie que si l’on ne modifie que peu
de données, alors la valeur de la fonction ne change que peu. Autrement dit, il faut modifier beaucoup de
données pour que la fonction soit modifiée significativement. C’est une propriété de robustesse.

La morale à retenir peut être formulée ainsi : en grande dimension (c’est-à-dire n grand), les observables
robustes ne voient que les événements typiques. Inversement, les événements plus fins, non typiques6, ne sont
pas robustes. Seules les structures robustes sont statistiques.

1.2 La géométrie en analyse des données

L’apparition de la géométrie en science des données provient à la fois de la pratique et de la théorie.

Du côté pratique, cela vient du fait que, malgré que la malédiction de la dimension semble prohiber toute
forme de statistique en grande dimension, l’utilisation de certains outils statistiques fonctionne malgré tout,
alors que l’on s’attendrait à ce qu’ils ne fonctionnent pas à cause de la grande dimension.

Du côté théorique, l’existence d’une géométrie intrinsèque aux données constitue une bonne hypothèse
de travail pour démontrer, de façon rigoureuse, des résultats non triviaux et utilisables en pratique dans le
cadre de la grande dimension. Cette hypothèse justifie également a posteriori l’observation selon laquelle, en
pratique, de nombreux algorithmes fonctionnent malgré la grande dimension.

De façon très vague, cela peut être résumé par ce que l’on appelle l’hypothèse de la variété.

Hypothèse. (hypothèse de la variété) Les données de grande dimension X1, . . . , Xn ∈ RD, D ≫ 1, possèdent
une géométrie intrinsèque, de dimension intrinsèque d≪ D.

Un des objectifs de ce cours sera de comprendre plus précisément ce que signifie cette hypothèse, c’est-
à-dire ce que l’on entend par ”géométrie intrinsèque”, mais également quelles sont ses implications, tant du
point de vue pratique que théorique, en mettant davantage l’accent sur les idées conceptuelles plutôt que sur
les aspects techniques.

1.2.1 Géométrie des données

Premier cas, Figure 1.2 : on mesure la configuration d’un bras robotique avec 3 articulations. Chaque articu-
lation est caractérisée par son orientation, c’est-à-dire son angle, et un angle dans l’espace est naturellement
vu comme un vecteur sur la sphère S2. Par conséquent, ici les données sont à valeurs dans la variété produit

S2 × S2 × S2 ⊂ R3 × R3 × R3 = R9.

6par exemple l’événement où tous les Xi sont égaux, correspondant à l’observable 1X1=···=Xn



8 CHAPTER 1. INTRODUCTION

Figure 1.2: Bras robotique
Données dans S2 × S2 × S2

(image de M. Belkin)

Un second cas, Figure 1.3, est constitué d’un ensemble de photos d’un même visage 3D d’une statue,
prises sous différents angles. Alors que l’image est naturellement représentée comme un vecteur de dimension
égale au nombre de pixels (donc très grande dimension), le fait que les seuls degrés de liberté soient l’angle
de prise de vue induit de facto une structure de dimension intrinsèque beaucoup plus petite.

Figure 1.3: Visage vu sous différents angles
Données de dimension intrinsèque bien inférieure à la dimension ambiante
(image de [19])

Un autre exemple célèbre, voir [6, Section 2], montre que l’espace des patchs 3×3 d’une certaine collection
d’images, après normalisation, possède la topologie d’une bouteille de Klein, voir Figure 1.4.
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Figure 1.4: Bouteille de Klein dans R3

(image de K. Polthier, in [6])

Dans les deux premiers cas, on voit que la structure géométrique interne aux données résulte de contraintes
physiques (l’articulation du bras, l’angle de la prise de photo). Il est donc attendu que ce phénomène soit
récurrent. Notez bien que l’hypothèse de la variété dit deux choses : premièrement, les données ont une
géométrie interne (c’est-à-dire qu’il est possible de donner du sens au fait que deux données X1, X2 soient
proches, indépendamment de la façon dont on représente ces données), et deuxièmement, elles ont une
dimension intrinsèque qui ne dépend pas de la dimension utilisée pour les collecter ou représenter, et qui est
souvent beaucoup plus petite.

D’un point de vue probabiliste, l’hypothèse de la variété peut être vue de façon heuristique7 comme une
conséquence8 du fait que les données possèdent des corrélations internes. Cela signifie la chose suivante.
Soient

X1, . . . , Xn ∈ RD

des données iid à valeurs dans RD avec D grand. Il s’ensuit que

X1 = (X1
1 , X

2
1 , . . . , X

D
1 ).

Le nombre de coordonnées étant très grand, on observe souvent des corrélations entre elles, donc lesX1
1 , . . . , X

D
1

seront des variables aléatoires réelles corrélées. On pourra alors écrire ces corrélations sous la forme

a.s. φ(X1
1 , . . . , X

D
1 ) = 0

pour une certaine fonction φ : RD → Rl représentant les contraintes suivies par les coordonnées. Notez que
l’on parle de corrélations internes parce que ce sont les coordonnées des données dans la représentation que
l’on a qui sont corrélées, et non pas les données elles-mêmes, que l’on suppose iid.

Un exercice d’analyse multivariée de niveau licence permet d’affirmer que si φ est suffisamment régulière,
alors la pré-image φ−1(0) est une variété de dimension D − l, et donc les données sont supportées sur cette
variété de dimension intrinsèque d = D − l ≪ D dès lors que l est suffisamment grand, ce qui correspond
exactement à l’hypothèse de la variété.

Exercice : Quelles hypothèses doit-on rigoureusement supposer pour montrer que la pré-image φ−1(0)
est effectivement une variété ? (indice : se rappeler du théorème des fonctions implicites).

Parmi les premières personnes à avoir étudié l’hypothèse de la variété, Belkin et Niyogi (2003) l’ont
introduite comme un modèle permettant de pallier le fléau de la dimension. En effet, comme vu à la

7nous laissons les lecteurs comprendre pourquoi cela n’est pas totalement rigoureux
8et donc pas une hypothèse !
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section 1.1.2, le fait que les données soient en grande dimension entrâıne quasi systématiquement qu’elles
sont éloignées les unes des autres, et par conséquent la taille de l’échantillon devrait dépendre de façon
exponentielle de la dimension pour obtenir des résultats statistiquement efficaces. Autrement dit, si l’on est
en dimension D, étant donné un seuil d’erreur ε > 0, on devrait avoir des échantillons de l’ordre de

n =
1

εD

afin de pouvoir faire correctement des statistiques. Or, pour D ≈ 106 et ε ≈ 10−1, cela donne des tailles
d’échantillons inconcevables.

L’hypothèse de la variété, telle que présentée par Belkin et Niyogi, consiste donc, lorsque les données sont
de grande dimension, à les modéliser comme étant à valeurs dans une variété de plus basse dimension, à
laquelle on peut ajouter un bruit (voir Figures 1.6 et 1.5). Formulée de façon statistique, cela revient à dire
que, étant donné X1, . . . , Xn ∈ RD, on considère des modèles statistiques (Pθ)θ où chaque loi de probabilité
Pθ est supportée sur une sous-variété de dimension plus petite que D.

Hypothèse. (hypothèse de la variété : modèle statistique en grande dimension)
Les données proviennent d’un tirage sur une sous-variété, plus un bruit.

Figure 1.5: Tore + bruit
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Figure 1.6: Tore + bruit

L’hypothèse de la variété a de nombreuses conséquences conceptuelles et interprétations. Pour illustrer
ces conséquences, prenons l’exemple de la classification d’images de chiens et de chats. L’hypothèse de la
variété affirme que l’ensemble des photos de chats possède une structure géométrique intrinsèque, et de même
pour l’ensemble des photos de chiens. Le problème de classification revient alors à être capable de ”séparer”
ces deux sous-variétés de l’espace des images, qui sont entrelacées. Voir Figure 1.7.

Figure 1.7: Sous-variétés entrelacées
Problème de classification

(image de C. Olah)

Comme mentionné précédemment, l’hypothèse de la variété nâıt d’un aller-retour entre pratique et théorie.
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D’une part, la théorie statistique ”classique”, à cause du fléau de la dimension, prédit des convergences
extrêmement lentes (voire inobservables), alors qu’en pratique, de nombreux algorithmes qui traitent des
données de grande dimension fonctionnent malgré tout en temps raisonnable. L’hypothèse de la variété peut
alors être vue comme une explication de ce phénomène, car les vitesses de convergence effectives dépendraient
de la dimension intrinsèque, qui reste de taille raisonnable.

D’autre part, supposer que les données sont supportées sur une variété, donc utiliser le modèle ”manifold
+ noise”, constitue un cadre théorique dans lequel on peut obtenir des résultats statistiques concordant avec
les résultats observés en pratique. Cela fournit un cadre théorique cohérent pour l’étude.

Ces deux aspects peuvent se résumer ainsi :

1. Apprendre la géométrie et la dimension intrinsèques des données afin d’en tirer des informations statis-
tiques utiles ; ce sera le chapitre 3.

2. Supposer que l’on connâıt la géométrie des données, et établir sous quelles conditions géométriques une
théorie de l’estimation statistique ou de l’apprentissage est disponible ; ce sera le chapitre 4.

Concluons en mentionnant qu’apprendre la dimension intrinsèque des données correspond aux algorithmes
de réduction de dimension. Dans notre cadre géométrique, il s’agira de méthodes de réduction de dimension
non linéaires.

En particulier, la réduction de dimension peut être utilisée afin de rendre possibles des calculs qui seraient
autrement trop coûteux, mais elle sert également comme un outil de statistique descriptive, c’est-à-dire qu’elle
permet de projeter les données en dimension 2 ou 3, en respectant d’une certaine façon leur géométrie, et de
les rendre ainsi visualisables, de façon analogue aux statistiques descriptives usuelles telles que les quantiles
ou les diagrammes en bôıte.

1.2.2 Géométrie de l’information

Un sujet très riche et proche, bien que différent de la géométrie des données traitée dans ce cours, est la
géométrie de l’information. Bien qu’il ne sera pas question de géométrie de l’information dans ce cours, nous
esquissons ici, de façon très grossière, sa ”définition” afin d’en souligner les différences avec la géométrie des
données.

Étant donné X1, . . . , Xn ∈ RD, on considère un modèle statistique (Pθ)θ∈Θ avec Θ ⊂ Rk un ouvert. La
géométrie de l’information consiste à voir le paramètre θ comme un système de coordonnées, et donc à voir
le modèle (Pθ)θ∈Θ comme une variété équipée d’une structure métrique9. Par exemple, la divergence de
Kullback-Leibler induit une telle structure, et possède notamment de nombreux liens avec l’estimation par
maximum de vraisemblance.

On retiendra donc qu’en géométrie des données, on considère une géométrie sur les données elles-mêmes
X1, . . . , Xn, tandis qu’en géométrie de l’information, on considère une géométrie sur le modèle statistique
que l’on a choisi.

9définie à partir de l’information de Fisher, d’où le nom ”géométrie de l’information”



Chapter 2

Qu’est-ce que la géométrie ?

Dans cette section, nous présentons quelques éléments de géométrie qui seront nécessaires pour la suite du
cours. Nous discutons les concepts et présentons les principaux outils techniques.

Le mot géométrie vient de ”geo”, en référence à Gäıa, la déesse grecque de la Terre, et de ”métrie”,
signifiant ”mesure de”. Ainsi, au sens premier, la géométrie est la mesure de la Terre. Rien d’abstrait, rien
d’axiomatique, aucune quête de démonstrations parfaitement rigoureuses, simplement la capacité de mesurer
le monde dans lequel nous vivons.

À première vue, le sens de la géométrie peut sembler avoir perdu ses racines, puisque les géomètres
modernes étudient des sujets aussi abstraits que la topologie algébrique ou la géométrisation des variétés de
dimension 3 de Thurston. Cependant, la sphère S2 ⊂ R3, définie par l’équation algébrique x2 + y2 + z2 = 1,
est elle-même une variété algébrique, modèle de notre terre ronde. Et puisque notre espace semble être
tridimensionnel, la géométrisation de Thurston n’est rien de moins que la classification de tous les espaces
possibles dans lesquels nous pourrions vivre; car, selon la relativité générale d’Einstein, l’espace (ou plutôt
l’espace-temps) dépend de la matière qu’il contient.

Ainsi, si nous convenons de ne pas interpréter ”geo”, la Terre, trop littéralement comme la planète que
nous habitons, mais plus largement comme le monde dans lequel nous vivons, alors ”Géométrie” demeure le
terme parfait pour décrire notre objectif : mesurer le monde.

2.1 Géométrie Riemannienne

Dans sa thèse d’habilitation de 1854 [16], intitulée Über die Hypothesen, welche der Geometrie zu Grunde
liegen (Sur les hypothèses qui servent de fondement à la géométrie), Bernhard Riemann, qui venait d’achever
sa thèse de doctorat sous la direction de Gauss, pose la question de ce qui définit la notion d’espace.

Pendant très longtemps, la géométrie s’est attachée à l’étude des figures dans l’espace, et elle a procédé a
priori, comme dirait Kant, c’est-à-dire qu’elle partait d’un ensemble de postulats, principalement les axiomes
d’Euclide, et en déduisait, de manière purement logique, des propriétés concernant les rapports de longueurs,
les angles ou le concours de droites.

Les philosophes, constatant que la vérité des résultats obtenus en géométrie, c’est-à-dire leur adéquation
avec le monde réel, dont la géométrie sert ultimement la compréhension par la mesure, dépendait de manière
cruciale de la vérité des axiomes, ont commencé à examiner ces axiomes de plus près. C’est précisément ici
que nous rencontrons Riemann, réfléchissant aux hypothèses qui constituent les fondements de la géométrie,
dans une dissertation mathématique que beaucoup aujourd’hui jugeraient plutôt philosophique, notamment
parce qu’elle contient très peu de formules mathématiques ; il s’agit essentiellement d’une quinzaine de pages
de texte ! Et l’une des premières choses qui frappe le lecteur, et qui frappa Riemann lui-même lorsqu’il
examina les axiomes, est qu’ils traitent des propriétés des figures contenues dans l’espace (droites, cercles,
etc.), mais non de l’espace lui-même, qui les contient. Ne devrait-on pas pourtant attendre des fondements
de la géométrie qu’ils portent sur l’espace lui-même, et qu’à partir de là on puisse déduire le comportement
des objets qu’il contient ?

13
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Pour Riemann, la notion d’espace cöıncide avec le concept de grandeur. Ce qui importe, c’est la manière
dont cette grandeur est mesurée : son mode de détermination. La difficulté tient alors au fait que, même
si l’on sait mesurer une longueur dans une direction donnée, cela ne détermine pas entièrement le concept
lorsque la grandeur possède plusieurs dimensions : il faut comprendre comment les mesures effectuées dans
différentes directions interagissent entre elles. Il résume cette idée de la manière suivante :

Il en résultera qu’une grandeur de dimensions multiples est susceptible de diverses relations
métriques, et que l’espace n’est donc qu’un cas particulier d’une grandeur à trois dimensions.
Il s’ensuit nécessairement que les propositions de la géométrie ne peuvent être déduites des con-
cepts généraux de grandeur, mais que les propriétés par lesquelles l’espace se distingue de toute
autre grandeur tridimensionnelle concevable ne peuvent être tirées que de l’expérience. De là nâıt
le problème de trouver les faits les plus simples par lesquels les relations métriques de l’espace
peuvent être déterminées. [...]
— Bernhard Riemann, 1854

Il s’agit donc de déterminer les relations métriques de l’espace, c’est-à-dire la manière dont les longueurs
se comportent les unes par rapport aux autres lorsqu’on les considère dans plusieurs directions différentes.
Considérons le cas où le mode de mesure est continu, ce qui signifie que les résultats possibles sont des
nombres réels, et supposons que nous ayons affaire à une grandeur de dimension n, c’est-à-dire possédant
n directions indépendantes le long desquelles des mesures peuvent être effectuées indépendamment. Enfin,
supposons que nous nous déplacions d’un point A vers un point B, et qu’à l’issue de ce déplacement nous
ayons mesuré, le long de chacune de ces directions indépendantes, une ”longueur” dxi, i = 1, · · · , n. Nous
demandons alors : quelle longueur ds doit-on attribuer au segment reliant le point A au point B ?

Puisque nous avons supposé la grandeur de dimension n, et puisque nous avons effectué des mesures dans
n directions indépendantes, nous devons nécessairement pouvoir exprimer ds comme une fonction des dxi ;
sinon, nous ne serions pas en dimension n mais au moins en dimension n+ 1. La formule qui exprime ds en
fonction des dxi est ce que Riemann appelle les relations métriques de l’espace.

Si nous voulons que ces relations correspondent à la géométrie euclidienne — en particulier en dimension
2, nous sommes rapidement conduits au théorème de Pythagore, et donc à la relation métrique quadratique
suivante :

ds2 = dx21 + · · ·+ dx2n (2.1.1)

Rappelons maintenant que l’objectif de Riemann est d’examiner les fondements ; il ne peut donc pas
s’arrêter au théorème de Pythagore, déjà bien compris et découlant directement des axiomes d’Euclide. La
question devient alors : quelles sont les relations métriques les plus générales que l’on puisse concevoir ? Bien
sûr, on pourrait simplement affirmer qu’il existe une certaine fonction exprimant ds en fonction des dxi, mais
un tel niveau de généralité ne permet pas de saisir la notion d’espace que nous cherchons à décrire.

Il s’agit là d’un fait récurrent en mathématiques : il existe toujours un compromis entre la généralité
d’un énoncé, c’est-à-dire le nombre d’objets qu’il englobe, et son caractère informatif, c’est-à-dire la quantité
d’information qu’il fournit. Les deux cas extrêmes consistent soit à être très imprécis tout en parlant de
beaucoup de choses (dire peu sur beaucoup), soit à être très précis tout en parlant de peu de choses (dire
beaucoup sur peu).

Dans le cas présent, nous voulons une forme très générale pour les relations métriques de l’espace, mais
en même temps nous souhaitons que cette forme demeure compatible avec une notion proche de celle que
nous nous faisons de l’espace. Ce que Riemann observe, c’est que la relation métrique précédente, issue du
théorème de Pythagore, possède la propriété cruciale d’être quadratique en les dxi. Par conséquent, exprimer
une relation quadratique générale de la forme

ds2 =

n∑
i,j=1

gij dxi dxj

peut être vu comme l’extension la plus naturelle du théorème de Pythagore, et constitue le fondement de ce
que l’on appelle aujourd’hui la géométrie riemannienne.1

1”Des relations encore plus compliquées peuvent apparâıtre lorsqu’on ne suppose plus que l’élément linéaire puisse être
représenté par la racine carrée d’une expression différentielle du second degré.” - Riemann, 1854. C’est précisément ce qui
donnera plus tard naissance à ce que l’on appelle aujourd’hui la géométrie finslérienne.
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Pour préciser les choses, nous concevrons ces éléments de longueur dxi comme étant très petits, de sorte
que la formule exprimant ds en fonction des dxi ne soit valable qu’au sens infinitésimal. Afin de commencer
à formuler ces idées dans le langage des mathématiques modernes, nous ne considérerons plus ces éléments de
longueur comme des quantités infinitésimales, mais plutôt comme des directions que l’on peut emprunter en
s’éloignant d’un point x. Nous représentons ces directions par des vecteurs attachés au point x, et l’ensemble
de tous ces vecteurs forme ce que l’on appelle l’espace tangent en x.

Puisque nous sommes en dimension n, l’ensemble de tous les vecteurs possibles que l’on peut concevoir
est, en tant qu’espace vectoriel, isomorphe à Rn.2

Si les dxi sont des vecteurs de dimension n attachés au point x, il s’ensuit que les quantités gij = gij(x)
sont également attachées au point x et forment une matrice n× n,

gx = (gij(x))ij ,

appelée le tenseur métrique. La forme des relations métriques de l’espace peut alors se réécrire

ds2 = gx(dx, dx),

où le vecteur tangent est donné par dx = (dx1, · · · , dxn). Le tenseur métrique en un point x est donc
une forme quadratique définie sur l’espace tangent en x. De plus, cette forme quadratique doit satisfaire
certaines propriétés naturelles : elle doit être positive, gx(u, u) ≥ 0, puisqu’elle représente une longueur ; elle
doit également être définie, gx(u, u) = 0 ⇒ u = 0, de sorte que le seul vecteur de déplacement qui ne nous
déplace pas soit le vecteur nul ; enfin, elle doit être symétrique, gx(u, v) = gx(v, u). Tout cela peut se résumer
en disant que le tenseur métrique est un produit scalaire sur l’espace tangent.3

La connaissance locale des relations métriques de l’espace suffit à en déduire la structure globale, en ce
sens que si l’on souhaite connâıtre la distance parcourue le long d’un chemin d’un point A à un point B, il
suffit d’intégrer la relation de l’élément de longueur infinitésimal ds le long de ce chemin, du point A à un
point infiniment proche A+dx, et ainsi de suite jusqu’à atteindre B en suivant toujours la même trajectoire.

Plus rigoureusement, un chemin de A à B est représenté par une application différentiable à valeurs dans
notre espace M, donnée par

γ : [0, 1] → M,

telle que γ(0) = A ∈ M et γ(1) = B ∈ M. À chaque instant du chemin, t ∈ (0, 1), nous pouvons calculer la
dérivée γ̇(t) en cet instant, c’est-à-dire le vecteur vitesse au point γ(t). Il s’agit d’un vecteur dans l’espace
tangent attaché au point γ(t) ∈ M.

Le tenseur métrique nous permet alors de calculer la longueur de ce vecteur vitesse, c’est-à-dire la vitesse
(scalaire) effective, et il ne reste plus qu’à intégrer cette quantité pour obtenir la longueur totale parcourue :

length(γ) =

∫ 1

0

√
gx(γ̇(t), γ̇(t)) dt.

Notons la présence de la racine carrée, qui garantit que l’expression possède bien la dimension d’une longueur,
puisque le tenseur métrique g définit une forme quadratique.

Nous renvoyons à [12] pour une monographie complète.

2.1.1 Variétés différentielles

On part d’un ensemble de points M, que l’on conçoit comme ”l’espace” qui nous intéresse, et notre objectif
est d’être capable de se repérer sur cet espace. On définit donc la notion de coordonnées (on parle de
cartes par référence à la cartographie, la science s’occupant de représenter graphiquement des informations
géographiques).

Définition 2.1.1. Soient p0 ∈ V ⊂ M, avec V un ouvert. On dit qu’une application bijective

ψ : V → Rd,

continue et dont la bijection réciproque est également continue, est une carte locale en p0.

2C’est un théorème élémentaire d’algèbre linéaire que tout espace vectoriel de dimension n est isomorphe à Rn.
3Cela munit ainsi chaque espace tangent Tx d’une structure d’espace de Hilbert (Rd, gx).
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Autrement dit, une carte est un homéomorphisme local.
La condition de bijectivité est importante : elle assure que tout point p ∈ V a un unique ensemble de
coordonnées

ψ(p) = (ψ1(p), . . . , ψd(p)) ∈ Rd,

et que réciproquement, à tout ensemble de coordonnées (x1, . . . , xd) ∈ Rd correspond un unique point

p = ψ−1(x1, . . . , xd) ∈ M.

Définition 2.1.2. On dit qu’une famille de cartes (ψi : Vi → Rd)i∈I est un atlas lorsque les cartes recouvrent
tout l’espace : ⋃

i∈I
Vi = M.

Une fois que l’on a une façon de se repérer dans l’espace, on souhaite pouvoir effectuer des calculs à partir
de ces coordonnées. Pour cela, on a besoin que les cartes soient des applications différentiables. Étant donné
que l’on sait dériver une fonction définie sur Rd, on utilisera les cartes ψ : V → Rd pour effectuer les calculs
dans Rd, puis on reviendra dans M en utilisant la réciproque ψ−1.

Rappelons qu’un difféomorphisme de classe Ck entre deux ouverts U, V ⊂ Rd est une application bijective
ψ : U → V , de classe Ck, dont la bijection réciproque ψ−1 : V → U est également de classe Ck. On dit
que deux ouverts sont difféomorphes s’il existe un difféomorphisme de classe Ck entre eux. Notez que pour
que deux ouverts U ⊂ Rd1 et V ⊂ Rd2 soient difféomorphes, il faut nécessairement que leurs dimensions
cöıncident : d1 = d2.

Définition 2.1.3. Une variété différentielle de classe Ck et de dimension d est un espaceM qui est localement
difféomorphe à Rd : il existe un atlas (ψi : Vi → Rd)i∈I , avec Vi ⊂ M, tel que les changements de coordonnées

ψi ◦ ψ−1
j : Rd → Rd

soient des difféomorphismes.

Un changement de coordonnées est défini dès lors que deux systèmes de coordonnées sont définis sur un
même voisinage V d’un point p : ψi : V → Rd et ψj : V → Rd. Dans ce cas, la composition ψi◦ψ−1

j : Rd → Rd
est bien définie, voir Figure 2.1.

Figure 2.1: Changement de coordonnées, image issue de [14]
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Cette condition de compatibilité, demandant que les changements de coordonnées soient des difféomorphismes,
est essentielle : elle garantit que le fait qu’une application f : M → R soit différentiable en un point p ∈ M
ne dépend pas de la carte utilisée pour le vérifier.

Définition 2.1.4. On dit qu’une fonction f : M → R est différentiable en p ∈ M lorsqu’il existe un voisinage
p ∈ Vp ⊂ M et une carte ψ : Vp → Rd tels que l’application composée f ◦ ψ−1 : Rd → R soit dérivable en
ψ(p) ∈ Rd. La différentielle de f en p est définie par

dfp : Rd → R
u 7→ d(f ◦ ψ−1)ψ(p)(u).

Cette formule ne dépend pas du choix de la carte ψ ni du voisinage Vp.

La différentielle de f en p ∈ M, dans la direction u ∈ Rd, représente la variation de f au voisinage de p
dans la direction u. Ici, le vecteur u ∈ Rd représente donc une direction dans laquelle on peut se déplacer en
partant de p. Il s’agit d’un vecteur attaché à p, appelé vecteur tangent à p.

L’ensemble des vecteurs tangents à un point p forme un espace vectoriel de dimension d, la dimension de
la variété M, et est donc isomorphe à Rd. L’espace Rd sur lequel est défini la différentielle dans la définition
précédente doit être compris comme l’espace tangent TpM à M en p, et non comme un espace euclidien
canonique.

En particulier, si l’on dérive la fonction f en un autre point p′ ∈ M, la différentielle en p′ sera définie sur
un autre espace tangent Tp′M, toujours isomorphe à Rd. Une façon correcte d’y penser est de considérer
TpM comme l’espace formé de toutes les directions dans lesquelles peut se déplacer un point situé en p.
Chaque carte ψ : Vp → Rd fixe un isomorphisme entre TpM et Rd via la différentielle de la carte : chaque
vecteur (u1, . . . , ud) ∈ Rd est identifié à un vecteur tangent

(u1∂x1
ψ, . . . , ud∂xd

ψ) ∈ TpM.

L’espace tangent attaché à p ∈ M peut aussi être défini comme l’ensemble des vitesses en p des courbes
dérivables passant par p. Une courbe à valeurs dans M est une application γ : (−1, 1) → M, et on dit qu’elle
passe par p si γ(0) = p. Sa dérivée en 0 est donnée par

γ′(0) = (ψ−1 ◦ γ)′(0) ∈ Rd,

où ψ : Vp → Rd est une carte, et cette dérivée ne dépend pas du choix de la carte grâce à la condition de
compatibilité de la définition 2.1.3.

Définition 2.1.5. Soit M une variété différentielle et p ∈ M. L’espace tangent à M en p est défini par

TpM :=
{
γ′(0)

∣∣ γ ∈ C1((−1, 1);M), γ(0) = p
}
.

2.1.2 Variétés Riemanniennes

Avec les définitions précédentes, on a réussi à donner du sens à la notion de dérivée sur des espaces non
euclidiens (plus généraux que Rd). À ce stade, cependant, nous n’avons aucun moyen de mesurer la taille
d’un vecteur tangent. En effet, l’espace tangent est certes isomorphe à Rd, mais l’isomorphisme est donné
par le choix d’une carte, c’est-à-dire d’un système de coordonnées.

Par conséquent, si l’on utilise cet isomorphisme pour déterminer la taille d’un vecteur, cette taille dépendra
nécessairement du choix du système de coordonnées, ce qui est absurde : la hauteur d’un objet ne dépend
pas du système de mesure utilisé !

Pour remédier à ce problème, on doit supposer que sur chaque espace tangent TpM, il existe une façon
intrinsèque de mesurer, c’est-à-dire un produit scalaire. On peut alors définir la notion de variété riemanni-
enne.

Définition 2.1.6. On dit queM est une variété riemannienne de dimension d si c’est une variété différentielle
de classe C∞ et que, pour tout point p ∈ M, l’espace tangent TpM est muni d’un produit scalaire

gp : TpM× TpM → R,

tel que l’application p 7→ gp soit lisse.
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À retenir : gp est une matrice symétrique définie positive de taille d× d et constitue un objet intrinsèque,
c’est-à-dire que si l’on exprime gp dans un système de coordonnées, ses coefficients (gij)1≤i,j≤d dépendent du
choix de la carte, mais le résultat du produit scalaire gp(u, v) ∈ R ne dépend pas du système de coordonnées.

En pratique, étant donnée une carte ψ : Rd → Vp, un vecteur u ∈ TpM s’écrit u = (ui)i≤d et sa longueur
est

gp(u, u) =
∑
i,j

gijuiuj .

Ici, les coefficients gij et les composantes ui dépendent de la carte, mais le produit scalaire gp(u, u), lui, reste
indépendant de la carte.

La philosophie derrière ce formalisme est la suivante :

Une propriété est de nature géométrique lorsqu’elle ne dépend pas du système de
coordonnées choisi.

Ainsi, en pratique, on utilise des coordonnées pour se repérer et effectuer des calculs, mais on cherche des
propriétés invariantes par changement de coordonnées, car ce sont ces propriétés qui fournissent une véritable
information sur la nature de notre problème.

Dans notre cadre, on dispose de données X1, . . . , Xn qui vivent sur une variété M, mais ces données sont
fournies sous forme de vecteurs dans RD, avec D très grand (de l’ordre de plusieurs millions). La variété
M, de dimension d beaucoup plus petite (d ≪ D), est plongée dans RD. En cherchant de l’information sur
la structure intrinsèque des données, et non dépendante de la représentation dans RD, on recherche donc
l’information de nature géométrique sur M.

La propriété la plus évidente qui ne dépend pas du choix d’un atlas est le nombre de composantes connexes.
Cette propriété est de nature topologique : elle ne nécessite pas de notion de métrique pour être définie, la
donnée de la topologie (c’est-à-dire de l’ensemble des ouverts) suffit.

2.1.3 Distance, géodésiques, coordonnées normales

La notion de distance ne dépend pas non plus du choix des coordonnées : c’est bel et bien une notion
géométrique, et heureusement ! Comme mentionné précédemment, une courbe lisse reliant un point p à un
point q est une application de classe C∞ :

γ : [0, 1] → M

telle que γ(0) = p et γ(1) = q. La distance parcourue en suivant cette courbe est définie par

length(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt.

L’idée est simple : la vitesse instantanée est la longueur du vecteur vitesse, on multiplie par le temps dt et
on intègre.

On souhaite ensuite définir la distance entre deux points p et q. La distance doit être la longueur minimale
à parcourir pour aller de l’un à l’autre, peu importe le chemin choisi. Cela se traduit par l’infimum sur tous
les chemins possibles. La distance riemannienne dg induite par le tenseur métrique g est donc

dg(p, q) := inf
γ:p→q

length(γ),

où l’infimum est pris sur toutes les courbes γ reliant p à q.
On peut facilement vérifier que dg est symétrique : dg(p, q) = dg(q, p), car length(γ(t)) = length(γ(−t)).

Une courbe qui atteint l’infimum, c’est-à-dire une courbe qui réalise le plus court chemin entre deux points,
est appelée une géodésique minimisante.4

Exercice : Vérifier que dans le cas euclidien (Rd, Id), on retrouve la distance classique et que les
géodésiques sont les droites.

4La notion de géodésique en géométrie riemannienne est plus générale que celle de courbe minimisant la longueur.
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Étant donnés deux points p et q sur une variété riemannienne, il est toujours possible de trouver une
géodésique minimisante. Cependant, elle n’est pas forcément unique : pensez aux pôles Nord et Sud de
la Terre, reliés par tous les méridiens. Si p et q sont suffisamment proches, il existe toujours une unique
géodésique minimisante. Pour l’exemple de la Terre, seuls les points antipodaux sont reliés par plusieurs
géodésiques minimisantes.

Une construction naturelle est la suivante : étant donné un point p et un vecteur v ∈ TpM tangent à p,
on veut définir le point q atteint si l’on part de p dans la direction de v et que l’on parcourt une distance
égale à ∥v∥g =

√
gp(v, v). Si cette distance est suffisamment petite, la géodésique minimisante est unique.

Cela permet de définir l’application exponentielle au point p5.

Définition 2.1.7. On définit l’application exponentielle au point p :

expp : TpM → M

en posant, pour tout u ∈ TpM,

expp(u) = la valeur au temps 1 de la géodésique minimisante γ telle que γ(0) = p, γ̇(0) = u.

Si ∥u∥g est assez petit, cette application est bien définie, mais elle n’est en général pas définie sur tout TpM.

La plus grande boule B(0, r) ⊂ TpM ≃ Rd sur laquelle l’application exponentielle est bien définie est
appelée le domaine d’injectivité, et le plus grand rayon rmax est le rayon d’injectivité. Alors

expp : B(0, rmax) → M

est un difféomorphisme. Comme la boule ouverte B(0, rmax) ⊂ Rd est difféomorphe à Rd6, il s’agit d’une
carte. L’application exponentielle fournit ainsi des coordonnées locales très particulières autour de p, appelées
coordonnées normales.

Exercice : Montrer que dans l’espace euclidien (Rd, Id), les coordonnées normales en 0 cöıncident avec
les coordonnées cartésiennes.

La morale est que les coordonnées normales constituent un choix canonique de coordonnées autour d’un
point, mais ce n’est pas parce qu’une formule est vérifiée en coordonnées normales qu’elle est indépendante
du choix de la carte. Seules les propriétés invariantes par changement de coordonnées sont véritablement de
nature géométrique.

2.1.4 Volume Riemannien

De même que dans l’espace euclidien Rd, la notion de distance permet de définir la notion de volume :
une fois que l’on a défini les mètres, on peut définir les mètres carrés, les mètres cubes, etc. Dans Rd, le
volume naturel, c’est-à-dire celui associé à la distance euclidienne (la norme ∥·∥2), est donné par la mesure de
Lebesgue. Celle-ci associe un nombre réel positif ou nul à chaque partie mesurable A ⊂ Rd, de façon cohérente
avec la distance euclidienne. En particulier, si R : Rd → Rd est une isométrie, la mesure de Lebesgue est
préservée :

λ(R(A)) = λ(A).

Dans le cas général où la métrique est Riemannienne, il existe également une notion naturelle de volume
pour les sous-ensembles de la variété : le volume Riemannien.

Étant donnée une variété Riemannienne (M, g) et une carte ψ : V → Rd pour un ouvert V ⊂ M, le
volume Riemannien d’un ensemble mesurable A ⊂ V est défini par

volg(A) =

∫
ψ(A)

√
det
(
gψ−1(x1,...,xd)

)
dx1 · · · dxd.

5Ce terme est utilisé par analogie avec la théorie des groupes de Lie.
6À vérifier.
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Cette formule se comprend ainsi : en chaque point p ∈ M, le tenseur métrique gp est une matrice d× d
symétrique définie positive. Son déterminant est strictement positif. On se ramène ensuite sur Rd via la
carte ψ et on intègre par rapport à la mesure de Lebesgue dx1 · · · dxd.

Pour que cette définition soit bien géométrique, il faut vérifier deux points :

i) La quantité volg(A) ne dépend pas du choix de la carte ψ. L’unité de mesure du volume peut varier
selon la carte, mais pas le volume lui-même.

ii) Si A n’est pas entièrement contenu dans un unique ouvert V muni d’une carte, on découpe A selon un
atlas (Vi)i et on définit

volg(A) =
∑
i

volg(A ∩ Vi),

il faut alors vérifier que ce découpage ne dépend pas du choix de l’atlas.

On retiendra que, de façon infinitésimale et exprimée en coordonnées, la densité de la mesure volume
Riemannienne est

dvolg(x) =
√
det(gx) dx,

où dx est la mesure de Lebesgue usuelle. Cette écriture dépend du choix de la carte, mais la mesure volume
Riemannienne sous-jacente reste intrinsèque à la variété.

2.1.5 Courbures

La propriété la plus cruciale en géométrie Riemannienne, qui est purement géométrique et ne dépend absol-
ument pas des systèmes de coordonnées ni du plongement choisi, est la notion de courbure.

Intuitivement, la courbure mesure à quel point un espace n’est pas plat. L’espace plat étant l’espace
Euclidien, dans lequel le théorème de Pythagore (2.1.1) est valable et où la courbure est nulle. Ceci équivaut
à ce que le tenseur métrique soit égal à la matrice identité en tout point et dans toutes les cartes : g = Id.

C’est une notion cruciale en géométrie Riemannienne car la connaissance du tenseur de courbure, appelé
tenseur de Riemann, permet de reconstruire la métrique g. Différentes notions de courbure existent, et
chacune peut se définir à partir du tenseur de courbure. La définition rigoureuse de ce tenseur dépasse le
cadre de ce cours, mais nous allons toutefois définir la notion de courbure sectionnelle, qui sera utilisée à la
section 4.2.

Définition 2.1.8. Soit (M, g) une variété Riemannienne et p ∈ M. Pour tout couple de vecteurs or-
thonormés u, v ∈ TpM, c’est-à-dire tels que

gp(u, u) = gp(v, v) = 1 et gp(u, v) = 0,

il existe un réel K(u, v) ∈ R tel que

dg(expp(tu), expp(tv))
2 = t2∥u− v∥22 −

1

3
K(u, v) t4 + o(t4),

où ∥ · ∥2 désigne la norme euclidienne sur TpM. Le nombre K(u, v) est appelé la courbure sectionnelle.
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Figure 2.2: Courbure sectionnelle positive

La courbure sectionnelle mesure localement la déviation de deux géodésiques partant dans deux directions
différentes.

• Si elle est nulle, l’écart entre les géodésiques partant du même point est linéaire (cas euclidien).

• Si elle est négative, cet écart est sur-linéaire, les géodésique tendent à s’éloigner (cas hyperbolique).

• Si elle est positive, cet écart est sous-linéaire, les géodésiques tendent à se rapprocher (cas sphérique).

Figure 2.3: Courbure sectionnelle négative

2.1.6 Opérateur de Laplace-Beltrami

Étant donnés un point p ∈ M et un nombre r > 0, on peut considérer la boule géodésique B(p, r) de centre
p et de rayon r, c’est-à-dire l’ensemble des points situés à distance au plus r du point p pour la distance
Riemannienne dg :

B(p, r) := {x ∈ M| dg(x, p) ≤ r} .

On peut également considérer les boules ouvertes, selon les besoins. Puisque l’on dispose d’une notion de
volume intrinsèque, on définit le volume riemannien des boules géodésiques par volg(B(p, r)).

Soit maintenant f : M → R une fonction de classe C2. Pour tout p ∈ M, on peut calculer le développement
limité en r = 0 de la fonction

r 7−→ 1

volg(B(p, r))

∫
B(p,r)

f(x) dvolg(x),
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qui représente la valeur moyenne de f sur la boule B(p, r). On obtient, pour un certain coefficient dépendant
de f et de p, que l’on note ∆f(p),

1

volg(B(p, r))

∫
B(p,r)

f(x) dvolg(x) = f(p) +
r2

2(d+ 2)
∆f(p) + o(r2), (2.1.2)

où d est la dimension de la variété M.

Définition 2.1.9. L’opérateur qui à une fonction f ∈ C2(M,R) associe la fonction

p 7−→ ∆f(p)

défini par le développement de Taylor (2.1.2) est appelé opérateur de Laplace-Beltrami et est noté ∆.

Exercices :

1. Montrer que si (M, g) = (R, 1), alors l’opérateur de Laplace-Beltrami correspond à la dérivée seconde
f 7→ f ′′.

2. Montrer que si (M, g) = (Rd, Id), alors l’opérateur de Laplace-Beltrami correspond au Laplacien

f 7→
d∑
i=1

∂2f

∂x2i
.

La morale à retenir est que le Laplacien d’une fonction en un point p mesure à quel point cette fonction
dévie de sa moyenne sur une petite boule centrée en p.

En particulier, une fonction sur Rd dont le Laplacien est nul partout (une fonction harmonique, solution
de ∆f = 0) est égale à sa moyenne sur toutes les boules. Sur une variété générale, cela n’est plus vrai, car
les termes d’ordre supérieur dans (2.1.2) font intervenir la courbure de la variété.

Théorème 2.1.10. Soit (M, g) une variété Riemannienne compacte de dimension d. Alors l’ensemble des
fonctions solutions de l’équation

∆f = 0

forme un espace vectoriel de dimension égale au nombre de composantes connexes de M.
En particulier, si l’on note

M =

k⋃
i=1

Ci

la décomposition en composantes connexes, alors les k fonctions

fi(p) =

{
1 si p ∈ Ci,

0 sinon
, i = 1, . . . , k

forment une base de l’espace des solutions de ∆f = 0.

On retient que l’opérateur de Laplace-Beltrami encode, entre autres, les composantes connexes de la
variété.

Un autre résultat fondamental, qui sera utilisé à la section 3.2 pour le clustering spectral, est le suivant,
dû à Hermann Weyl.

Rappelons que le spectre d’un opérateur est défini comme pour une matrice : les valeurs λ pour lesquelles
il existe une fonction non nulle f telle que

∆f = λf

sont appelées valeurs propres, et les fonctions f associées sont les fonctions propres.

Théorème 2.1.11. L’opposé −∆ de l’opérateur de Laplace-Beltrami sur une variété Riemannienne compacte
(M, g) de dimension d admet un spectre discret :

0 = λ0 < λ1 ≤ λ2 ≤ · · ·

qui tend vers l’infini (λk → ∞ lorsque k → ∞), et chaque valeur propre a une multiplicité finie.
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2.1.7 Théorème de plongement de Nash et reach d’une variété

Dans cette section, nous présentons le théorème de Nash ainsi que la notion de reach d’une variété.

Définition 2.1.12 (Plongement). On dit qu’une variété M est plongée dans RD s’il existe une application

f : M → RD,

appelée plongement, telle que la restriction f |M : M → f(M) soit une isométrie.
Par abus de notation, on identifiera souvent M avec son image f(M) et on écrira M ⊂ RD.

Le théorème fondamental de Nash affirme que toute variété riemannienne peut être plongée dans un
espace euclidien :

Théorème 2.1.13 (Nash). Si M est une variété riemannienne de dimension d, alors il existe un entier
D > d et un plongement f : M → RD. On peut montrer que D = d(d+ 1)(3d+ 11)/2 suffit.

Conséquences :

• Théorique : Il suffit de comprendre la théorie des sous-variétés de RD pour comprendre la théorie
générale des variétés riemanniennes.

• Pratique : Puisque les données sont toujours collectées comme vecteurs dans RD, toute configuration
riemannienne peut, en principe, être représentée sous cette forme.

On distingue souvent le point de vue extrinsèque et intrinsèque :

• Extrinsèque : étudier la forme de la surface depuis un espace environnant (ex. la Terre vue depuis
l’espace).

• Intrinsèque : étudier la surface sans quitter celle-ci, à partir de mesures locales (ex. distances, angles).

Pour une variété plongée, une quantité extrinsèque très utile est le reach.

Définition 2.1.14 (Reach d’une variété plongée). Soit M ⊂ RD une variété plongée. Le reach de M est le
plus grand réel ε > 0 tel que tous les points situés dans le ε-voisinage de M admettent une unique projection
orthogonale sur M.

Remarque : Le reach dépend du plongement choisi et non uniquement de la variété intrinsèque.

• Exemple : une feuille de papier plate plongée dans R3 a un reach infini (en ignorant les angles).

• Si on froisse légèrement la feuille, son reach devient fini, même si la géométrie intrinsèque reste inchangée
(tant qu’on ne déchire pas la feuille).

Exercice : Montrer que le reach d’une sphère plongée naturellement dans R3 est égal à son rayon.

2.2 Géométrie métrique

Un bon cadre théorique pour étudier la géométrie est fourni par la géométrie Riemannienne, comme présenté
à la section 2.1. Ce cadre est extrêmement riche et puissant, mais il présente aussi certaines limites qui
découlent précisément de ses forces : la richesse de la géométrie riemannienne provient de la rigidité de sa
structure (cartes lisses, tenseur métrique lisse, etc.), et ces conditions de régularité sont si fortes qu’elles
excluent de nombreux objets qui ne sont pourtant pas pathologiques.

Par exemple, un carré n’est pas une variété riemannienne à cause de ses angles pointus, même s’il s’agit
d’un objet simple et très régulier dans un sens intuitif.

Dans cette section, nous introduisons un cadre plus général, permettant de pallier ces limitations tout en
conservant une notion de géométrie significative.
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2.2.1 Définitions générales

Comme on l’a vu à la section précédente, le cadre riemannien a été introduit afin de déterminer les rapports
métriques d’un espace. Pour cela, on a procédé de façon infinitésimale : on a d’abord défini le tenseur métrique
comme produit scalaire sur l’espace tangent, puis on en a déduit une distance, la distance géodésique.

On peut se demander s’il n’est pas possible de sauter directement cette étape infinitésimale et de considérer
un espace métrique (X, d), c’est-à-dire un ensemble X muni d’une distance

d : X ×X → R+

satisfaisant les axiomes classiques :

(i) d(x, y) = 0 ⇐⇒ x = y (séparation),

(ii) d(x, y) ≤ d(x, z) + d(z, y) (inégalité triangulaire),

(iii) d(x, y) = d(y, x) (symétrie).

Cette approche évite de supposer une structure lisse, trop rigide pour inclure des ensembles simples comme
un carré. En revanche, le contre-coup est évident : maintenant, beaucoup d’exemples sont trop irréguliers
pour être intéressants, comme les ensembles de Cantor ou d’autres objets fractals.

Pour rendre la théorie plus pertinente, on ajoute des axiomes supplémentaires.

Définition 2.2.1 (Géodésique). Une courbe continue γ : [0, 1] → X est une géodésique si elle réalise la
distance entre ses extrémités, c’est-à-dire si

d(γ(t), γ(s)) = |t− s| d(γ(0), γ(1)), ∀s, t ∈ [0, 1].

Autrement dit, γ est une isométrie du segment [0, d(γ(0), γ(1))] muni de la distance euclidienne.

Définition 2.2.2 (Espace géodésique). Un espace métrique (X, d) est dit géodésique si, pour tout couple de
points x, y ∈ X, il existe au moins une géodésique les reliant (γ(0) = x, γ(1) = y). Notez qu’il peut en exister
plusieurs : par exemple, sur la sphère, entre deux points antipodaux, il existe une infinité de géodésiques.

Définition 2.2.3 (Espace de longueur). Un espace métrique (X, d) est dit espace de longueur si la distance
est réalisée comme l’infimum des longueurs de toutes les courbes reliant deux points :

d(x, y) = inf
γ:x→y

ℓ(γ),

où la longueur d’une courbe γ : [0, 1] → X est définie par

ℓ(γ) = sup

{
n∑
i=1

d(γ(ti−1), γ(ti))

∣∣∣∣∣ 0 = t0 < · · · < tn = 1

}
.

Exercice : Comparer les deux notions d’espace géodésique et d’espace de longueur. Sont-elles équivalentes
? L’une implique-t-elle l’autre ?

2.2.2 Géométrie d’Alexandrov

En machine learning, il arrive souvent que les fonctions de coût que l’on cherche à optimiser soient en
fait des distances, ou bien des carrés de distance (comme le coût quadratique, omniprésent en statistiques
mathématiques).

Or, un des cas les plus simples à étudier pour la minimisation d’une fonction est celui où cette fonction
est convexe.

C’est le cas du coût quadratique : il s’agit du carré de la distance euclidienne. Sa Hessienne est égale à
deux fois la matrice identité, qui est définie positive, et donc la perte quadratique est évidemment convexe,
voire fortement convexe.

Dans cette section, nous abordons brièvement le cas où le carré d’une distance est fortement convexe, car
cette hypothèse a de très fortes implications géométriques : il s’agit de la théorie des espaces métriques à
courbure d’Alexandrov bornée supérieurement.7 Ces notions seront réutilisées à la section 4.2.

7En anglais CBA pour curvature bounded above.
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Définition 2.2.4 (Convexité géodésique). Soit (X, d) un espace géodésique. Une fonction f : X → R est
dite géodésiquement convexe si, pour toute géodésique γ : [0, 1] → X, la fonction f ◦γ : [0, 1] → R est convexe
au sens usuel. Autrement dit, pour tous x, y ∈ X et toute géodésique γ reliant x à y,

∀t ∈ [0, 1], f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

Définition 2.2.5 (Convexité géodésique forte). Soit (X, d) un espace géodésique. Une fonction f : X → R
est dite K-fortement géodésiquement convexe si, pour toute géodésique γ : [0, 1] → X, la fonction f ◦ γ est
K-fortement convexe au sens usuel, c’est-à-dire :

∀t ∈ [0, 1], f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))− K

2
d(x, y)2.

Exercice : Montrer que les seules fonctions f : Sn → R géodésiquement convexes sont les fonctions
constantes. Indication : la définition requiert la convexité le long de toutes les géodésiques, y compris
lorsqu’il n’y a pas unicité.

Nous pouvons maintenant introduire la notion centrale pour les espaces à courbure non positive.

Définition 2.2.6 (Espace CAT(0)). Un espace métrique (X, d) est dit CAT(0) si :

(i) il est géodésique et complet,

(ii) pour tout point p ∈ X, la fonction

x 7→ d(p, x)2

est 1-fortement géodésiquement convexe.

L’acronyme CAT provient des noms de Cartan, Alexandrov, Toponogov, trois mathématiciens ayant
contribué au développement de cette théorie.

Exercice : L’espace Euclidien (Rd, || · ||2) est-il CAT(0) ? Qu’en concluez-vous ?

Quelques propriétés importantes des espaces CAT(0) :

(i) Une variété Riemannienne est CAT(0) si, et seulement si, sa courbure sectionnelle est partout non
positive.

(ii) Les arbres métriques sont CAT(0).

(iii) Dans un espace CAT(0), pour tous points x, y ∈ X, il existe une unique géodésique reliant x à y.

(iv) Pour toutes géodésiques γ1, γ2 : [0, 1] → X, la fonction

t 7→ d(γ1(t), γ2(t))

est géodésiquement convexe.

(v) Comparaison des triangles : un espace est CAT(0) si et seulement si tous ses triangles sont ”plus
fins” que les triangles Euclidiens. Formellement, pour tout triangle (x, y, z) dans X, il existe un triangle
modèle (x′, y′, z′) dans R2 avec les mêmes longueurs de côtés, et pour toutes géodésiques γuv reliant les
sommets correspondants,

d(γuv(t), γuw(t)) ≤ ||(1− t)u′ + tv′ − ((1− t)u′ + tw′)||, ∀t ∈ [0, 1],

pour toutes paires de sommets (u, v, w) du triangle.

Exercice : En utilisant la comparaison des triangles et la définition de la courbure sectionnelle de la
section 2.1.5, montrer la propriété (i).
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2.3 Topologie

La topologie est une discipline des mathématiques née des travaux de Henri Poincaré entre la toute fin du
19ème siècle et le tout début du 20ème, alors baptisée par l’expression latine Analysis Situs, assez difficile-
ment traduisible, éventuellement signifiant quelque chose comme ”analyse de la position” ou ”analyse des
situations”. (Noter qu’étymologiquement, la topologie est la science des lieux).

En langage moderne, l’idée de la topologie est de pouvoir définir la notion de voisinages entre points d’un
espace, et la notion de continuité d’une transformation de cet espace, sans avoir à recourir à la notion de
distance. Dit autrement, la topologie permet de parler de voisinages, c’est-à-dire de dire si deux points sont
voisins ou non, sans quantifier cela, et donc seulement de façon qualitative. Il s’agit donc d’une théorie de
géométrie encore plus générale que la notion d’espaces métriques. Il s’agit de la topologie générale, usuelle-
ment aujourd’hui enseignée en L3 de mathématiques.

Une idée plus poussée, décrite comme de la topologie algébrique, consiste à vouloir associer des invariants
algébriques à des espaces, afin d’être en mesure de comparer ces espaces en comparant leurs invariants. Cette
branche de la topologie est dite algébrique car les invariants sont de nature algébrique : groupes, espaces
vectoriels, etc. Un invariant est une fonctionnelle8 qui, à un espace X, associe un objet A(X) (souvent
de nature algébrique) vérifiant la propriété suivante : si X et X ′ sont isomorphes9, alors ils ont le même
invariant10 A(X) = A(X ′). Les invariants permettent donc de déterminer si deux espaces sont vraiment
distincts, au sens où si l’on arrive à montrer que A(X) ̸= A(X ′), alors X ̸= X ′. Noter que la plupart du
temps, un invariant ne caractérise pas un espace, c’est-à-dire qu’on peut très bien avoir A(X) = A(X ′) mais
X ̸= X ′.

2.3.1 Le groupe fondamental

Un invariant topologique que vous avez très probablement déjà rencontré est le groupe fondamental. Étant
donné un espace topologique X et un point x0 ∈ X, on considère l’ensemble de ses lacets, c’est-à-dire
l’ensemble des applications continues γ : [0, 1] → X telles que γ(0) = γ(1) = x0. On munit cet ensemble de
la loi de concaténation : si γ1 et γ2 sont des lacets, alors le lacet produit γ := γ1γ2 est défini par

γ(t) =

{
γ1(2t) si t ∈ [0, 1/2],

γ2(2t− 1) si t ∈ [1/2, 1].

Ceci munit l’ensemble des lacets basés en x0 d’une structure de groupe. On ne veut alors décompter comme
différents que les lacets qui ne peuvent pas être déformés continûment l’un en l’autre. De façon formelle, on
passe au quotient l’ensemble des lacets par la relation ”être homotopes”, et cet ensemble quotient obtenu est
alors appelé le groupe fondamental et dénoté π1(X,x0). Il s’agit d’un invariant topologique, au sens où si
φ : X → X ′ est un homéomorphisme, alors les groupes π1(X,x0) et π1(X

′, φ(x0)) sont isomorphes.

Exercice : Deux lacets γ1 : [0, 1] → X et γ2 : [0, 1] → X basés en x0 ∈ X sont dits homotopes s’il existe
une fonction continue H : [0, 1]× [0, 1] → X vérifiant les trois conditions

∀t ∈ [0, 1], H(t, 0) = γ1(t),

∀t ∈ [0, 1], H(t, 1) = γ2(t),

∀s ∈ [0, 1], H(0, s) = H(1, s) = x0.

Le groupe fondamental est défini comme l’espace des lacets identifiés entre eux par homotopie. Que faut-il
vérifier pour s’assurer que la loi de composition définie précédemment définit bien une structure de groupe ?
Vérifiez-le.

8on dira souvent un foncteur par référence à la théorie des catégories
9par exemple homéomorphes, isométriques, etc.

10l’invariant est invariant, d’où son nom...
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Exercice : Montrer que si X est connexe par arcs, alors pour tout x, y ∈ X, les groupes π1(X,x) et
π1(X, y) sont isomorphes, permettant alors de parler du groupe fondamental de X.

D’un point de vue intuitif, le groupe fondamental est relié au nombre de ”trous” dans l’espace. Par exem-
ple, la sphère a un groupe fondamental trivial (c’est le groupe composé d’un seul élément, le lacet constant égal
au point de base) ; on dit qu’elle est simplement connexe. Le tore a un trou11, son groupe fondamental est Z2.

Exercice : Montrer que le groupe fondamental du tore est Z2.

Plus généralement, deux fonctions f, g : X → Y sont dites homotopes s’il existe une fonction continue
H : [0, 1]×X → Y telle que H(0, ·) = f et H(1, ·) = g.

Deux espaces X et Y sont dits homotopiquement équivalents s’il existe deux applications f : X → Y et
g : Y → X telles que f ◦ g est homotope à IdY et g ◦ f est homotope à IdX .

Un espace X est dit contractile s’il est homotopiquement équivalent à un point (c’est-à-dire à l’espace
singleton {0}).

Exercice :

1. Montrez que Rd est contractile.

2. Montrez que le groupe fondamental d’un espace contractile est réduit à un point.

3. Un tore est-il un espace contractile ?

4. Un cercle est-il contractile ?

2.3.2 Homologie simpliciale

Un k-simplexe est défini comme l’enveloppe convexe de k + 1 points affinement indépendants dans Rk. Par
exemple, un 1-simplexe est un segment, un 2-simplexe est un triangle, un 3-simplexe une pyramide, etc.

Un complexe simplicial K est une famille de simplexes telle que toutes les faces d’un simplexe de K sont
elles-mêmes des simplexes de K, et l’intersection de deux simplexes de K est soit vide, soit une face commune
aux deux.12

Un complexe simplicial abstrait est la codification en théorie des ensembles d’un complexe simplicial, sans
avoir à demander que les éléments du complexe abstrait soient vraiment des simplexes. Étant donné un
ensemble quelconque V , on dit que A est un complexe simplicial abstrait avec sommets dans V si V ⊂ A et
si pour tout σ ∈ A, tout sous-ensemble s ⊂ σ est un élément de A : s ∈ A.

L’homologie simpliciale est alors définie de la façon suivante pour K un complexe simplicial.
Soit k ∈ N. L’ensemble des k-châınes Ck(K) est défini comme étant l’ensemble des sommes finies formelles

écrites à partir des k-simplexes σi ∈ K :

p∑
i=1

ni σi, avec ni ∈ Z/2Z.

Dit de façon plus rigoureuse, il s’agit de l’espace vectoriel sur13 le corps Z/2Z des entiers modulo 2 engendré
par les k-simplexes de K.

Le bord d’un k-simplexe σ = [v0, · · · , vk] est défini comme le (k − 1)-simplexe donné par

∂k(σ) :=

k∑
i=0

(−1)i[v0, · · · , v̂i, · · · , vk],

11c’est un donut
12Une triangulation est un complexe simplicial ; il s’agit d’une généralisation de ce concept.
13On peut prendre d’autres coefficients, par exemple Z
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où [v0, · · · , v̂i, · · · , vk] dénote le (k − 1)-simplexe généré par les points v0, · · · , vk auxquels on a retiré vi.

L’opérateur de bord peut alors être prolongé en une application linéaire

∂k : Ck(K) → Ck−1(K),

son noyau ker(∂k) ⊂ Ck(K) est appelé l’espace des k-cycles, et son image Im(∂k) ⊂ Ck−1(K) est appelée
l’espace des k-bords. Les opérateurs de bord vérifient la propriété fondamentale

∂k ◦ ∂k+1 = 0.

Reformulée avec des mots, cette relation fondamentale dit que les bords n’ont pas de bord, et elle implique
que les (k + 1)-bords sont des k-cycles :

Im(∂k+1) ⊂ ker(∂k).

On peut alors considérer l’espace vectoriel quotient

Hk(K) = ker(∂k)/Im(∂k+1),

qui est appelé le k-ème groupe d’homologie simpliciale, et sa dimension bk(K) est appelée le k-ème nombre
de Betti.

Il s’agit d’invariants topologiques : si K et K ′ sont homéomorphes, alors ils ont les mêmes groupes
d’homologie et les mêmes nombres de Betti.

Énonçons les faits suivants14 :

• Tous les Hk(K) sont abéliens par construction.

• H0(K) est égal au nombre de composantes connexes de K.

• H1(K) est égal à l’abélianisé du groupe fondamental π1(K).

Exercice : Déterminer l’homologie simpliciale de la sphère Sn.

14À défaut de preuve rigoureuse, le lecteur est au moins invité à réfléchir à pourquoi ces faits sont vrais



Chapter 3

Metric learning

3.1 Du discret au continu

La géométrie traite d’objets continus, d’espaces ayant une infinité de points, alors qu’en pratique les données
seront toujours en nombre fini et induiront donc des structures discrètes, en particulier des graphes. Il est
donc légitime de se demander si l’introduction d’objets aussi abstraits que les variétés riemanniennes pour
rendre compte de la structure des données1 est une idée pertinente.

Dans cette section, on présente un résultat dû à Gromov, connu sous le nom de théorème de reconstruction,
permettant d’argumenter en faveur du fait que la théorie des espaces métriques mesurés reste cohérente avec
la structure discrète des données, en ce sens que les données déterminent l’espace à la limite. Plus précisément
:

Théorème 3.1.1. (Théorème de reconstruction de Gromov)
Soient (M, dM, µ) et (N , dN , ν) deux espaces métriques mesurés, et soient deux échantillons (infinis) (Xi)i∈N
avec les Xi i.i.d. à valeur dans M et de loi µ, et (Yi)i∈N avec les Yi i.i.d. à valeur dans N et de loi ν.
On considère les suites de matrices Mn = (dM(Xi, Xj))1≤i,j≤n et Nn = (dN (Yi, Yj))1≤i,j≤n. Si pour tout
n ∈ N, Mn et Nn ont la même loi, alors les espaces sont isomorphes, au sens où il existe une application
f : M → N qui soit une isométrie envoyant µ sur ν.

Rappelons que f : M → N est dite être une isométrie si c’est une application surjective vérifiant

∀x, y ∈ M, dN (f(x), f(y)) = dM(x, y).

Exercice : Si f : M → N est une isométrie, montrer qu’elle est aussi injective, et que sa bijection réciproque
f−1 : N → M vérifie

∀x′, y′ ∈ N , dM(f−1(x′), f−1(y′)) = dN (x′, y′).

Rappelons également qu’on dit que l’application f : M → N envoie µ sur ν si le push-forward de µ par f est
égal à ν, autrement dit si X ∼ µ alors f(X) ∼ ν, ou encore pour toute fonction continue bornée ϕ : N → R,∫

M
ϕ(f(x)) dµ(x) =

∫
N
ϕ(y) dν(y).

3.2 Spectral Clustering

La référence principale de cette section est le papier de Von Luxburg [21].

Le clustering consiste à ranger les données en différents sous-groupes, appelés clusters, qui partagent des
caractéristiques communes.

Pour le graphe d’un réseau social par exemple, il s’agit de détecter les communautés, c’est-à-dire de
retrouver quels sont les sous-groupes d’utilisateurs qui interagissent le plus entre eux. Par définition, on

1via l’hypothèse de la variété

29
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veut trouver des sous-groupes qui partitionnent le graphe de telle sorte que chaque personne interagisse
significativement plus avec les personnes de son propre cluster qu’avec celles des autres clusters.

Une des forces des méthodes que l’on va examiner, et donc aussi une des difficultés, est que l’on souhaite
détecter les communautés de façon non supervisée, c’est-à-dire sans accès à des données étiquetées. Par
exemple, dans le cas du graphe d’un réseau social, aucun utilisateur n’est étiqueté avec le groupe auquel il
appartient : on ne sait pas quels sont les groupes, et on doit les construire. On parle d’apprentissage non
supervisé.

D’un point de vue géométrique, les différents clusters que l’on cherche à apprendre correspondent aux
composantes connexes du graphe des données.

Si les données sont de grande dimension Xi ∈ RD, on peut partir du principe2 qu’elles sont supportées sur
une sous-variété M ⊂ RD, et par conséquent le graphe construit à partir des données sera une discrétisation
de cette variété M. Ainsi, apprendre quelles sont les composantes connexes du graphe revient à apprendre
celles de la variété M. Or, tandis qu’un graphe est un objet mathématique relativement peu structuré3, on
peut tirer avantage de la structure riche de la variété M pour estimer ses composantes connexes.

Nous avons vu à la section 2.1.6 qu’il existe un opérateur différentiel linéaire d’ordre 2 sur une variété
compacte M, appelé l’opérateur de Laplace-Beltrami, dont le noyau4 caractérise entièrement les composantes
connexes de M, au sens où l’ensemble des fonctions constantes sur chacune des composantes connexes forme
une base. Par conséquent, la question géométrique de la détermination des composantes connexes de M se
réduit à la question analytique de trouver l’ensemble des solutions de l’équation de Poisson

∆f = 0.

Résoudre cette équation revient à résoudre une EDP elliptique linéaire d’ordre 2, faisable par des schémas
numériques. Cependant, dans notre cas, nous ne connaissons pas réellement la variété M ni son tenseur
métrique g, et nous n’avons donc pas accès à ∆. Nous n’avons accès qu’à un échantillon de pointsX1, · · · , Xn ∈
M ⊂ RD, et il va falloir trouver une façon de discrétiser l’opérateur différentiel ∆ à partir de cet échantillon,
ce qui nous ramène à déterminer le noyau d’une matrice, computationnellement tractable.

L’opérateur ∆ discrétisé est une matrice de taille n× n, appelée le graph Laplacian. Cela s’explique ainsi
: l’opérateur de Laplace-Beltrami agit sur des fonctions f : M → R, vues comme des vecteurs de dimension
le cardinal de M : f = (f(x))x∈M ∈ RM. Ici, nous n’avons pas accès à M tout entier, mais seulement
à l’échantillon X := {X1, · · · , Xn} ⊂ M. Ainsi, les fonctions sur M sont remplacées par des vecteurs sur
X, c’est-à-dire des éléments de Rn. Par conséquent, l’opérateur de Laplace-Beltrami, linéaire, devient une
application linéaire de Rn dans Rn, soit une matrice n× n.

Il existe plusieurs façons de construire un graph Laplacian. Dans ce qui suit, nous présentons le normal-
ized graph Laplacian ; pour un aperçu des autres constructions, voir [21].

On commence par construire une matrice de similarité entre les points de X :

K := (ki,j)1≤i,j≤n = (k(Xi, Xj))1≤i,j≤n,

définie à partir d’un noyau k : M×M → R∗
+ supposé positif, continu et symétrique. Le noyau est souvent

défini sur RD × RD contenant M×M. Le noyau le plus utilisé est le noyau gaussien :

k(x, y) = exp

(
−|x− y|2

2εn

)
,

où εn est un paramètre de bandwidth à choisir de façon appropriée pour garantir la convergence lorsque
n→ ∞.

2d’après l’hypothèse de la variété
3c’est un objet discret!
4c’est-à-dire l’espace propre associé à la valeur propre zéro
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On définit ensuite la matrice des degrés, diagonale, dont les entrées sont di =
∑n
j=1 kij :

D = Diag (d1, · · · , dn) .

Le normalized graph Laplacian est défini par

L := I −D−1/2KD−1/2, (3.2.1)

avec I la matrice identité n× n.

Exercice :

1. Montrer que L définit une forme quadratique linéaire sur Rn, donnée par

XTLX =
1

2

n∑
i,j=1

kij

(
xi√
di

− xj√
dj

)2

.

2. En déduire que L est diagonalisable.

3. Montrer que 0 est valeur propre avec vecteur propre D1/21, où 1 est le vecteur dont toutes les coor-
données valent 1.

4. Montrer que toutes les valeurs propres de L appartiennent à l’intervalle [0, 1].

Remarque : la matrice L ne converge vers le véritable Laplacien qu’une fois correctement normalisée. Il
faut choisir εn → 0 à la bonne vitesse ; alors ε−1

n L→ −∆. La matrice L converge vers un noyau de transition
markovien, expliquant pourquoi ses valeurs propres sont dans [0, 1] tandis que celles de −∆ sont dans R+.
Les valeurs propres de L convergent vers 1, en accord avec le Théorème 2.1.11 vu à la section 2.1.6.

Pour n grand et εn bien choisi :

ε−1
n L

f(X1)
...

f(Xn)

 ≈ −

∆f(X1)
...

∆f(Xn)

 .

Par le théorème 2.1.10, le noyau du Laplacien encode les composantes connexes de M, i.e. les clusters.
On étudie donc le noyau de ε−1

n L (ou L) pour retrouver les clusters. La convergence de l’opérateur discretisé
garantit que les k premières valeurs propres permettent de récupérer les k clusters.

Le spectral clustering consiste à diagonaliser L, retenir les k premières valeurs propres 0 = λ1 ≤ λ2 ≤
· · · ≤ λk et leurs vecteurs propres u1, · · · , uk ∈ Rn. On forme la matrice

U = (uji )1≤i≤n,1≤j≤k ∈ Rn×k.

On définit les coordonnées spectrales des points :

yi = (u1i , · · · , uki ) ∈ Rk.

On applique ensuite un algorithme k-means sur y1, · · · , yn pour obtenir des clusters A1, · · · , Ak ⊂ Rk, puis
on en déduit les clusters C1, · · · , Ck des données originales :

Xi ∈ Cj ⇔ yi ∈ Aj .

Ainsi, le spectral clustering revient à effectuer un k-means en coordonnées spectrales.

Récapitulatif des principes :
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1. Les composantes connexes d’une variété correspondent au noyau de l’opérateur de Laplace-Beltrami
(Théorème 2.1.10).

2. Convergence du graph Laplacian vers le Laplace-Beltrami :

εnL −→
n→∞

−∆.

Le premier point explique le fonctionnement intuitif de l’algorithme, et le second garantit la consistance
statistique du spectral clustering, comme traité dans la littérature, voir par exemple [22].

3.3 Réduction de dimension non linéaire

Si l’hypothèse de la variété est vraie, alors les données vivent sur une variété de dimension beaucoup plus
faible que l’espace ambiant. Le metric learning, ou apprentissage de la variété, permet donc de réduire la
dimension : c’est ce que l’on appelle les méthodes de réduction de dimension non linéaires, en opposition aux
méthodes linéaires, dont la plus célèbre et utilisée est l’Analyse en Composantes Principales (PCA).

Dans cette section, nous présentons l’algorithme Isomap ainsi que les diffusion maps, mais il existe
évidemment beaucoup d’autres techniques. Pour une revue plus détaillée, voir par exemple [20].

3.3.1 Isomap

Isomap (Isometric Mapping) est une technique non linéaire de réduction de dimension introduite dans [19],
qui vise à préserver la structure géométrique intrinsèque des données de haute dimension en approximant
les distances géodésiques entre les points de données. Contrairement aux méthodes traditionnelles comme
l’ACP (Analyse en Composantes Principales), qui reposent sur des hypothèses linéaires, Isomap capture la
structure du ”manifold” sous-jacent en construisant un graphe de voisinage où chaque point est connecté à
ses voisins les plus proches. Les arêtes de ce graphe sont pondérées selon les distances euclidiennes entre
les points connectés. La distance géodésique, représentant le plus court chemin le long du manifold, est
ensuite estimée en calculant dn, le plus court chemin entre des paires de points dans ce graphe pondéré.
Ces distances géodésiques estimées sont ensuite utilisées comme entrée pour le ”MultiDimensional Scaling”
(MDS), qui projette les données dans un espace de dimension inférieure tout en préservant les relations
géométriques globales. Cela rend Isomap particulièrement efficace pour les ensembles de données dont la
géométrie intrinsèque est non linéaire ou fortement courbée.

Nous nous concentrons sur le ε-graphe, dans lequel deux points xi et xj sont adjacents si et seulement si
|xi − xj | ≤ ε. Dans ce graphe, nous attribuons le poids wij = |xi − xj | à l’arête {xi, xj} lorsque xi ∼ xj .

Définition 3.3.1. Étant donné ε > 0, la distance Isomap est définie comme la distance du ε-graphe entre
xi et xj , c’est-à-dire :

dn,ε(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|,

où l’infimum est pris sur tous les chemins γ = (x0, . . . , xr+1) avec x0 = x, xr+1 = y, xi ∈ Xn pour tout
1 ≤ i ≤ r, et |xi+1 − xi| ≤ ε pour tout 0 ≤ i ≤ r.

Une version alternative de la distance Isomap considère le graphe des K plus proches voisins au lieu du
ε-graphe. Dans ce cas, deux points xi et xj sont connectés par une arête si l’un d’eux appartient à l’ensemble
des K plus proches voisins de l’autre selon la distance euclidienne. Dans ce qui suit, nous nous concentrons
sur la formulation du ε-graphe, bien que des résultats similaires s’appliquent au graphe des K plus proches
voisins. Le théorème suivant a été établi dans [4].

Théorème 3.3.2. Soit M une sous-variété lisse, compacte et connexe de dimension d de RD, et soit µ la
mesure de volume normalisée sur M. Soit Xn = {X1, . . . , Xn} un échantillon i.i.d. tiré de µ, et soit dn,εn la
distance du plus court chemin sur le graphe des εn-voisinages construit sur Xn, où deux points sont connectés
dès que leur distance euclidienne est inférieure à εn. Si εn → 0 et nεdn → ∞, alors

sup
x,y∈Xn

∣∣dn,εn(x, y)− dM(x, y)
∣∣ P−−−−→

n→∞
0,
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c’est-à-dire que la distance Isomap converge en probabilité vers la véritable distance géodésique dM sur M .
De plus, si le taux plus fort nεdn/ log n→ ∞ est vérifié, la convergence ci-dessus est presque sûre.

Notez que dans la condition sur le taux pour ε, c’est la dimension intrinsèque d qui apparâıt, et non la
dimension ambiante (qui peut être très grande) D.

On pourrait s’arrêter là et faire des statistiques avec cette distance apprise par Isomap. Cependant,
la plupart du temps, dans la pratique, on l’utilise pour projeter les données dans un espace de dimension
inférieure à celle de départ. La méthode la plus couramment utilisée pour cela est le MultiDimensional Scaling
(MDS). Il s’agit de partir du graphe complet des données, avec les arêtes pondérées par les distances apprises
entre les points. On cherche alors des points y1, . . . , yn ∈ Rd avec d ≪ D, choisis de manière à minimiser le
”stress” entre les points : ∑

i ̸=j

(dn,ε(Xi, Xj)− ∥yi − yj∥Rd)
2

1/2

.

3.3.2 Méthodes spectrales: Laplacian eigenmaps/ Diffusion maps

Dans la section 3.2, nous avons vu l’utilisation de l’opérateur de Laplace-Beltrami pour retrouver les com-
posantes connexes d’une variété, et en particulier l’utilisation de sa version discrétisée, le graph-Laplacien,
ainsi que son spectre.

L’idée était que si l’on cherche k clusters, cela signifie que le noyau du Laplace-Beltrami est de dimension
k et que les clusters correspondent aux k fonctions propres générant ce noyau. Dans la version discrétisée,
on prend alors les k plus petites valeurs propres ainsi que les vecteurs propres associés.

On appliquait ensuite l’algorithme des k-means dans cet espace de coordonnées spectrales. Cela corre-
spond à considérer les lignes de la matrice des vecteurs propres, et non plus les colonnes ; on se retrouve ainsi
en dimension k au lieu de n.

Dans ce cas, l’entier k était choisi comme le nombre de clusters recherchés. Mais l’idée du plongement
spectral est de prendre k bien plus petit que n, simplement pour réduire la dimension du problème. C’est
précisément ce dont bénéficie l’algorithme de spectral clustering : on applique un k-means à n vecteurs de
dimension k (beaucoup de vecteurs en ”basse” dimension) plutôt qu’à k vecteurs propres de dimension n
(peu de vecteurs mais de grande dimension5).

La réduction de dimension spectrale consiste donc à réduire la dimension du problème, mais une fois la
dimension réduite, on peut analyser les données comme on le souhaite, et pas seulement appliquer le k-means.

En particulier, la réduction de dimension peut servir à rendre possibles des calculs trop coûteux autrement,
mais elle est également utilisée comme outil de statistique descriptive, c’est-à-dire pour projeter les données
en dimension 2 ou 3 tout en respectant leur géométrie, les rendant ainsi visualisables.

Réduire la dimension des données dans RD signifie apprendre une fonction

φ : RD → Rd, d≪ D.

Dans le cadre de la réduction de dimension spectrale, on choisit φ de la manière suivante. Soient
X1, . . . , Xn ∈ RD les données, et posons

X = {X1, . . . , Xn} ⊂ RD.

On apprend la fonction φ uniquement sur l’ensemble des données, c’est-à-dire

φ : X → Rd.

Sous l’hypothèse de la variété, où les données sont supportées sur une variété M ⊂ RD, on s’attend à
ce que, pour un nombre de données n grand, la fonction apprise φ converge vers une fonction définie sur la
variété :

φ : M → Rd.
5le scénario redouté en statistiques !
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On construit alors un graph-Laplacien L, qui est une matrice n× n. On choisit d, la dimension réduite.
Typiquement, on prend d = 2 ou d = 3 pour de la visualisation, ou on choisit d de manière empirique selon
le problème. Dans ce cas, D peut être de l’ordre du million, et d d’une centaine, par exemple.

On calcule alors les d premiers vecteurs propres :

u1 = (u11, . . . , u
n
1 ) ∈ Rn,

...

ud = (u1d, . . . , u
n
d ) ∈ Rn.

La fonction φ est alors définie comme les coordonnées spectrales :

φ : Xn → Rd,
Xi 7→ (ui1, . . . , u

i
d).

Remarquez que si l’on met tous les vecteurs ui en colonnes dans une matrice n× d, la fonction φ revient
à associer à Xi la i-ème ligne de cette matrice.

Il existe un degré de liberté dans ce type de méthode : le choix du graph-Laplacien considéré. Dans
la section 3.2, nous avons présenté le Laplacien discret normalisé défini par l’équation 3.2.1. Dans ce cas,
l’apprentissage de la fonction φ est appelé la méthode Laplacian Eigenmaps, introduite par Belkin et Niyogi
[1, 2].

Un autre choix standard consiste à considérer le noyau de transition markovien :

P := D−1K,

qui définit une marche aléatoire sur le graphe des données. L’embedding obtenu à partir des vecteurs propres
de P est appelé Diffusion Map, introduit par Coifman et Lafon [8].

Le Laplacien associé à cette dynamique est le random walk graph Laplacian :

Lrw := I −D−1K.

D’un point de vue calculatoire, on a la relation

Lrw = D−1/2LsymD
1/2,

ce qui montre que ces deux opérateurs ont des propriétés spectrales étroitement liées.

Exercice : Montrer que λ est une valeur propre de Lrw avec vecteur propre u si et seulement si elle est
une valeur propre de L avec vecteur propre D1/2u. Conclure.

Du point de vue théorique, la justification de ces méthodes repose sur deux faits principaux :

1. les résultats de plongement des variétés dans des espaces de Hilbert via l’utilisation des noyaux de la
chaleur [3],

2. la convergence des graph-Laplaciens vers des opérateurs définis sur la variété des données.

Remarque 3.3.3. Le noyau de la chaleur est défini par Pt = e−t∆ ; il s’agit d’une famille d’opérateurs
interpolant entre l’opérateur identité pour t = 0 et un opérateur P∞ qui associe à une fonction sa moyenne
par rapport à la mesure de volume sur la variété :

f 7→ 1

vol(M)

∫
M
f dvol.

Pour un t > 0 fixé, on considère le spectre de l’opérateur de Laplace-Beltrami

0 = λ1 ≤ λ2 ≤ · · · ,
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ainsi que les fonctions propres associées u0, u1, . . . . Les auteurs montrent que l’application

M → ℓ2,

x 7→
(√

2(4π)d/4t
d+2
4 e−λjt/2uj(x)

)
j≥0

est un plongement de la variété M de dimension d dans l’espace de Hilbert ℓ2 des suites à carré sommable.
La convergence des graph-Laplaciens assure ensuite la consistance des procédures de plongement spectral.

3.3.3 UMAP, SNE, t-SNE

Les algorithmes UMAP, SNE et t-SNE sont également parmi les techniques de réduction de dimension non
linéaire les plus utilisées. Voici une liste de sujets de présentation, avec pour référence l’article [15].

1. expliquer l’algo SNE

2. expliquer l’idée géométrique de SNE

3. présenter une simulation en Python de SNE

4. expliquer l’algo t-SNE

5. expliquer l’idée géométrique de t-SNE

6. présenter une simulation en Python de t-SNE

7. expliquer l’algo UMAP

8. expliquer l’idée géométrique de UMAP

9. présenter une simulation en Python de UMAP

10. à quoi servent ces algos, comment sont-ils utilisés ?

11. quels mauvais usages sont pointés dans le papier [13] ?

3.4 Analyse Topologique des données

Cette section suit de très près le déroulé de l’exposé de Frédéric Chazal et Bertrand Michel [7], dont elle
reprend également les illustrations. Les lecteurs intéressés sont vivement invités à consulter ce très bel exposé.

Dans les méthodes de clustering, l’objectif était d’apprendre les composantes connexes d’une variété
riemannienne, supposée être le support de la loi des données observées.

On a vu à la section 2.3 que, d’un point de vue topologique, les composantes connexes sont encodées par
le zéro-ième groupe d’homologie H0.

En analyse topologique des données, on cherche à apprendre sur les données des propriétés topologiques
plus fines que la simple connaissance des composantes connexes. En particulier, on verra comment récupérer
de l’information sur les groupes d’homologie d’ordre supérieur. Puis, on définira la notion d’homologie
persistante et on montrera comment cette notion permet d’éliminer le bruit inhérent aux données grâce aux
résultats de stabilité.

3.4.1 Le théorème du nerf

L’homologie que l’on cherche à apprendre concerne avant tout les complexes simpliciaux. On commence donc
par voir comment construire des complexes simpliciaux à partir des données, c’est-à-dire à partir d’un nuage
de points et non plus d’un espace topologique continu, comme c’était le cas en théorie (cf. Section 2.3). Les
deux constructions les plus utilisées sont les suivantes :
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Définition 3.4.1 (Complexe de Vietoris-Rips). Étant donnés α > 0, k ∈ N, et un nuage de points Xn =
{x1, . . . , xn} dans un espace métrique (X, d), le complexe de Vietoris-Rips, noté Ripsα(Xn), est défini comme
l’ensemble des simplexes [x0, . . . , xk] tels que d(xi, xj) ≤ α pour tout i, j.

Par définition, le complexe de Vietoris-Rips est un complexe simplicial abstrait (cf. Section 2.3). Même
si les données sont à valeurs dans Rd, ce complexe n’admet pas forcément de réalisation dans Rd et peut être
de dimension plus grande que d.

Exercice : Montrer que pour k = 1, le complexe de Vietoris-Rips est égal au graphe des α-voisinages.

Définition 3.4.2 (Complexe de Čech). Étant donnés α > 0, k ∈ N, et un nuage de points Xn = {x1, . . . , xn}
dans un espace métrique (X, d), le complexe de Čech, noté Čechα(Xn), est défini comme l’ensemble des
simplexes [x0, . . . , xk] tels que les (k + 1) boules fermées B(xi, α) aient une intersection non vide.

Figure 3.1: Illustration provenant de [7]

Exercice : Montrer les inclusions suivantes :

Ripsα(Xn) ⊂ Čechα(Xn) ⊂ Rips2α(Xn).

Définition 3.4.3 (Nerf d’un recouvrement). Un recouvrement d’un espace topologique X est une famille
de sous-ensembles U = (Ui)i∈I telle que X =

⋃
i∈I Ui. Le nerf d’un recouvrement U est défini comme le

complexe simplicial abstrait C(U) dont les sommets sont les sous-ensembles Ui, et tel que

σ = [Ui0 , . . . , Uik ] ∈ C(U) ⇔
k⋂
j=0

Uij ̸= ∅.

On peut maintenant énoncer le théorème du nerf, qui affirme que si l’on choisit le recouvrement de façon
suffisamment régulière, alors l’espace est topologiquement équivalent au nerf de ce recouvrement.

Théorème 3.4.4 (Théorème du nerf). Soit U = (Ui)i∈I un recouvrement de X, tel que pour tout J ⊂ I,⋂
j∈J Uj soit vide ou bien contractible. Alors X est homotopiquement équivalent au nerf C(U) du recouvre-

ment.
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Figure 3.2: Illustration provenant de [7]

Le théorème du nerf garantit que si l’on parvient à inférer de l’information topologique à partir du nerf
d’un recouvrement régulier, alors cette information est également valide pour l’espace sous-jacent (le support
des données). Ceci est particulièrement utile, car nous n’avons pas accès au support des données6, mais on
peut manipuler les nerfs de recouvrement, assurant ainsi qu’aucune information n’est perdue par ce procédé.

Exercice :

1. Montrer que le complexe de Čech est le nerf d’un recouvrement, à déterminer.

2. Montrer que les ensembles convexes de Rd sont contractibles.

3. En déduire que si Xn ⊂ Rd, alors le complexe de Čech est homotopiquement équivalent à l’union des
boules

⋃
x∈Xn

B(x, α).

Le nerf d’un recouvrement des données est très utilisé pour la visualisation et l’exploration des données.
Cette idée est mise en pratique par le célèbre algorithme Mapper, voir Figure 3.3.

6On n’a quasiment jamais accès à cette information en pratique
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Figure 3.3: Algorithme Mapper, illustration provenant de [7]

3.4.2 Apprendre l’homologie

Dans cette section, nous présentons un résultat garantissant, sous des hypothèses de régularité, que les
nombres de Betti d’un espace peuvent se calculer à partir du complexe de Čech.

Théorème 3.4.5. Soit M ⊂ Rd une sous-variété lisse7 de Rd, de dimension m < d. On suppose que, pour
certains α ∈ (0, 1) et R > 0, la variété M possède un α-reach d’au moins R : reachα(M) ≥ R.

Soit un échantillon de points Xn = {x1, . . . , xn} ⊂M qui est ε-proche de M en distance de Hausdorff :

ε := dH(M,Xn) ≤
R

5 + 4/α2
.

Alors, pour tout r ∈ [4ε/α2, R − 3ε] et tout k = 0, . . . ,m, les nombres de Betti de M cöıncident avec les
nombres de Betti du complexe de Čech Cechr(Xn) construit à partir des données :

∀k = 0, . . . ,m, bk(Cechr(Xn)) = bk(M).

Ce résultat garantit que ce que l’on calcule en pratique à partir du complexe de Čech approche les
véritables nombres de Betti du support des données.

En pratique, certaines difficultés apparaissent, parmi lesquelles :

1. L’hypothèse sur le reach de la variété peut être assez restrictive.

2. Construire le complexe de Čech est compliqué, car la condition d’intersection des boules (vide ou
contractile) est difficile à vérifier.

3. Le choix du paramètre r peut être délicat.

4. L’instabilité aux outliers (voir Figure 3.4).

Bien que des méthodes aient été développées pour traiter ce type de problématiques, nous verrons dans
la section suivante une autre approche, basée sur un autre invariant topologique, l’homologie persistante, qui
permet également de pallier ce type de difficultés.

7c’est-à-dire de classe C∞
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Figure 3.4: Illustration provenant de [7]

3.4.3 Homologie persistante

Définitions

On commence par définir la notion de filtration avant de donner celle de module de persistance.

Définition 3.4.6 (Filtration).

• Une filtration d’un complexe simplicial K est une famille de sous-complexes simpliciaux (Kr)r∈T avec
T ⊂ R, tels que si r ≤ r′ alors Kr ⊂ Kr′ et K =

⋃
r∈T Kr.

• Une filtration d’un espace topologique X est une famille de sous-espaces topologiques (Xr)r∈T avec
T ⊂ R, tels que si r ≤ r′ alors Xr ⊂ Xr′ et X =

⋃
r∈T Xr.

Un exemple très important de filtration est la filtration par les sous-niveaux d’une fonction. Si f : X → R
est une fonction, alors la famille (

f−1((−∞, r])
)
r∈R

est automatiquement une filtration.

Exercice : Le prouver.

Dans la pratique, on veut des filtrations sur des données Xn = {x1, . . . , xn}. Il se trouve que la famille
des complexes de Čech (Cechr(Xn))r≥0 est une filtration, de même que la famille des complexes de Rips
(Ripsr(Xn))r≥0.

Dans ces deux cas, le paramètre r s’interprète très naturellement comme un paramètre d’échelle : pour
r ∼ 0, on observe la structure locale, ”microscopique”, tandis que pour r ≫ 1, on observe la structure globale.

Exercice : Prouver que les familles des complexes de Čech et des complexes de Rips sont des filtrations.
On définit maintenant la notion de module de persistance.

Définition 3.4.7 (Module de persistance). Un module de persistance est la donnée d’une famille d’espaces
vectoriels8 (Vr)r∈T indexée par T ⊂ R, ainsi que d’une famille d’applications linéaires

(lrs : Vr → Vs)r≤s, r, s ∈ T,

vérifiant la loi de composition
lst ◦ lrs = lrt , r ≤ s ≤ t,

8Espaces vectoriels sur le corps Z/2Z
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avec lss = Id.

Notez que l’ensemble des paramètres T ⊂ R correspond toujours, en pratique, à celui d’une filtration
(Kr)r∈T .

Sous de bonnes hypothèses9, tout module de persistance se décompose en somme directe de modules
élémentaires appelés modules d’intervalle.

Un module d’intervalle est défini de la manière suivante : l’ensemble des paramètres T est un intervalle
T = [b, d) ⊂ R, la famille des espaces vectoriels est constituée uniquement du corps de base

∀r ∈ [b, d), Vr = Z/2Z,

et les applications linéaires sont toutes l’identité. On peut aussi prolonger le module en l’indexant sur R
entier, et poser Vr = {0} si r /∈ [b, d). On peut alors représenter le module ainsi :

· · · → 0 → · · · → Z/2Z → · · · → Z/2Z → 0 → · · ·

Les flèches entre les zéros représentent l’application nulle, et les flèches entre les Z/2Z représentent l’application
identité. Le début de l’intervalle, noté b pour ”birth”, représente l’apparition d’une caractéristique topologique
dans la filtration à cette échelle, et la fin de l’intervalle, notée d, représente sa disparition.

La décomposition d’un module de persistance en une somme directe de modules d’intervalles joue un
rôle analogue à la réduction d’un endomorphisme en algèbre linéaire, où l’on met une matrice sous forme
diagonale par blocs.

Dès qu’un module est décomposable en modules d’intervalles, on peut définir son code-barres de persis-
tance comme l’ensemble des intervalles intervenant dans cette décomposition.

Puisque chaque intervalle peut se représenter comme un couple de points (b, d), on définit le diagramme
de persistance comme l’union de tous ces couples avec la diagonale

{(x, y) ∈ R2 | x = y}.

Il s’agit donc d’un sous-ensemble du demi-quadrant supérieur du plan, voir Figure 3.5.

On pourrait se demander ce qui se passe si un module de persistance peut être décomposé de plusieurs
façons différentes en modules d’intervalles. La réponse est un résultat qui assure que le diagramme de
persistance est indépendant de la décomposition choisie ; nous renvoyons le lecteur à [7] pour plus de détails.

Interprétation et exemples

Dans cette section, nous esquissons la construction des diagrammes de persistance en pratique sur deux
exemples.

9que l’on passera sous silence ici
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Figure 3.5: Illustration provenant de [7]

En pratique, le calcul du diagramme de persistance se fait de la manière suivante. On part d’une filtration
sur les données, très souvent la filtration de Rips (voir Figure 3.6) ou une filtration par sous-niveaux d’une
fonction (voir Figure 3.5).

Figure 3.6: Illustration provenant de [7]

Prenons le cas de la filtration de Rips. Pour chaque r > 0, on fait grossir des boules de rayon r centrées
en chaque point. Au début, pour des r très petits, les boules ne s’intersectent pas : cela donne autant de
boules que de points, et donc autant de segments initiaux que de points.

On laisse ensuite ces boules grandir avec r, ainsi que les segments. Dès que deux boules commencent à
s’intersecter, on arrête l’un des segments correspondants (par convention, celui le plus en haut dans la Figure
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3.6). On poursuit ce processus jusqu’à ce que r devienne si grand que toutes les boules s’intersectent : il ne
restera alors plus qu’un seul segment qui ne s’arrêtera jamais.

Si l’on regarde ce qui se passe à des échelles intermédiaires, on enregistre également l’apparition et la
disparition des 1-cycles, correspondant à l’image c) de la Figure 3.6. Lorsque des boules (Bi)i s’intersectent
de manière cyclique10, on en garde trace. Du point de vue de l’homologie, il s’agit des 1-cycles.

Dans cet exemple, puisque l’on est dans R2, il n’est pas nécessaire de considérer des k-cycles pour k > 1.
En général, on peut aller plus loin : par exemple, pour des points sur une sphère S2 ⊂ R3, lorsque les boules
grossissent, on observe d’abord les composantes connexes (H0), puis les cycles (H1), puis le trou de la sphère
(la cavité à l’intérieur), correspondant au 2-cycle.

Dans notre exemple, il y a l’apparition de deux 1-cycles à l’étape c), que l’on représente par les barres
bleues. Lorsque l’un des cycles disparâıt, on arrête l’un des deux segments, suivant le même principe que
pour les 0-cycles.

Stabilité et bruit

Rappelons l’idée générale. On dispose de données que l’on suppose supportées sur une sous-variété M ⊂ RD.
L’analyse topologique des données permet d’apprendre certaines propriétés topologiques de cette variété.
Ceci constitue le cadre théorique ”parfait”.

Dans la pratique, les données sont bruitées : elles ne vivent donc pas exactement sur une sous-variété,
mais plutôt dans le voisinage d’une sous-variété11. Pour que les méthodes soient utiles en pratique, il faut
qu’elles soient robustes12, c’est-à-dire que même avec des données bruitées, l’information topologique soit
récupérable.

Nous allons voir dans cette section que c’est le cas des diagrammes de persistance en analyse topologique
des données.

Afin de quantifier la stabilité, il est nécessaire de disposer de deux notions de distance : l’une entre le
nuage de points et la variété sous-jacente13, et l’autre entre les diagrammes de persistance. L’objectif est de
formuler des résultats généraux de la forme : si X et Y sont proches, alors les diagrammes de persistance
dgm(X) et dgm(Y ) sont proches.

Définition 3.4.8 (Bottleneck distance). La bottleneck distance entre deux diagrammes de persistance dgm1

et dgm2 est définie par

db(dgm1, dgm2) := inf
m

max
(p,q)∈m

∥p− q∥∞,

où l’infimum est pris sur tous les matchings m ⊂ dgm1 × dgm2 entre les diagrammes dgm1 et dgm2.

Par définition, un matching entre deux diagrammes dgm1 et dgm2 est un sous-ensemblem ⊂ dgm1×dgm2

tel que tous les points de dgm1 \ {(x, x) |x ∈ R} et tous les points de dgm2 \ {(x, x) |x ∈ R} apparaissent
exactement une fois dans m, voir Figure 3.7.

10c’est-à-dire Bi ∩Bi+1 ̸= ∅ pour i = 1, . . . , n− 1 et Bn ∩B1 ̸= ∅
11C’est le cadre de l’hypothèse de la variété : variété + bruit.
12on parle aussi de stabilité
13dont les données représentent une version bruitée et discrétisée
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Figure 3.7: Exemple de matching entre deux diagrammes, illustration provenant de [7]

La bottleneck distance est une distance de type L∞ qui mesure l’écart dans le pire des cas.

Exercice : Montrer que la bottleneck distance est bien une distance.

On introduit maintenant la distance de Hausdorff pour mesurer l’écart entre des formes.

Définition 3.4.9 (Distance de Hausdorff). La distance de Hausdorff entre deux ensembles A,B ⊂ Rd est le
plus petit ε tel que chacun des ensembles soit contenu dans le ε-voisinage de l’autre :

dH(A,B) := inf{ε > 0 |A ⊂ Bε et B ⊂ Aε},

avec

Aε := {x ∈ Rd |dist(x,A) ≤ ε}, dist(x,A) := inf
a∈A

∥x− a∥2.

Exercice : Montrer que la distance de Hausdorff est bien une distance.

On peut alors énoncer deux résultats fondamentaux de stabilité.

Théorème 3.4.10. Soient f, g :M → R deux fonctions régulières14 sur un espace topologique M , et soient
dgmk(f) et dgmk(g) les diagrammes de persistance associés pour un certain k ∈ N. Alors

db
(
dgmk(f), dgmk(g)

)
≤ ∥f − g∥∞.

Théorème 3.4.11. Soient X,Y ⊂ RD deux sous-ensembles compacts, et soient Filt(X) et Filt(Y) les filtra-
tions de Rips ou de Čech associées. Alors

db
(
dgm(Filt(X)), dgm(Filt(Y))

)
≤ 2 dH(X,Y),

où dgm(Filt(X)) désigne le diagramme de persistance construit à partir de la filtration considérée.

14Certaines notions de régularité sont omises ici
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Ces théorèmes garantissent que si les données X sont une version bruitée d’une certaine variété sous-
jacente, le diagramme de persistance calculé à partir des données ne peut pas être trop éloigné (en bottleneck
distance) du diagramme de la vraie variété.

En pratique, cela permet d’ignorer les points proches de la diagonale en dessous d’un certain seuil dans
le diagramme, voir Figure 3.8.

Figure 3.8: Illustration provenant de [7]



Chapter 4

Estimation statistique en contexte
géométrique

4.1 Tester l’hypothèse de la variété

Dans cette section, on considère l’hypothèse de la variété au sens statistique, et on va donc présenter un
exemple de construction d’un test statistique permettant de trancher si les données observées sont ou non
supportées sur une variété.

Dans la littérature, les premiers à construire un tel test sont Fefferman, Mitter et Narayanan dans [10].
Dans cette section, on présente un test un peu plus simple, mais utilisé récemment, voir [17].

Rappelons que l’on part de données X1, · · · , Xn ∈ RD. Le terme ”hypothèse de la variété” regroupe en
fait deux hypothèses de nature très différente.

La première est que l’on suppose que les données sont concentrées sur une sous-variété M ⊂ RD de
dimension plus petite d≪ D.

La seconde est que cette variété est une vraie variété au sens de la géométrie riemannienne, et donc qu’elle
est lisse.

Le premier point est le plus important en pratique, et c’est celui pour lequel on va proposer un test.

Considérons donc un jeu de données X1, · · · , Xn ∈ RD. On se fixe un k ∈ N, et pour tout Xi, on considère
l’ensemble de ses k plus proches voisins

Nk(Xi) = {Xi1 , · · · , Xik} ⊂ RD.

Afin de réduire en partie le bruit, on recentre chaque Xj ∈ Nk(Xi) par rapport aux autres points de ce
voisinage :

X̃j := Xj −
1

k

k∑
l=1

Xil .

On fait alors une analyse en composantes principales1 (PCA) pour les X̃j , et on récupère donc D valeurs
propres

λ1 ≥ λ2 ≥ · · · ≥ λD

mesurant chacune la variance dans une direction propre.

On se donne un seuil τ ∈ (0, 1)2 et on définit alors la dimension locale comme étant le plus petit di tel
que

di∑
j=1

λj ≥ τ

D∑
j=1

λj .

1Dans cette configuration, on parle de local PCA.
2Typiquement 0,9.

45
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Ce nombre di dépend de Xi, c’est pourquoi il est dit local. Il caractérise une notion de dimension, car il
encode le nombre de directions indépendantes dans lesquelles les données varient de façon significative, au
voisinage de Xi.

On répète cette procédure au voisinage de chaque Xi dans le jeu de données, et on obtient donc n
dimensions locales d1, · · · , dn ∈ [1, D].

Si l’hypothèse de la variété est vraie, alors tous les di doivent simultanément :

• être très proches de la même valeur (dimension constante),

• et cette valeur doit être significativement plus petite que D.

En se fixant a priori un seuil de variabilité des dimensions locales, ainsi qu’un seuil d’écart à D, cela
permet de définir un test qui rejette, ou non, l’hypothèse de la variété.

4.2 Loi des grands nombre pour les espaces à courbure négative
ou nulle

Dans cette section, on se place dans le cadre théorique où l’on suppose connue la géométrie, et l’on cherche
à établir des garanties de convergence a priori. Que la géométrie soit supposée connue signifie que l’on va
imaginer disposer d’un oracle nous donnant directement accès, notamment, aux géodésiques3.

On va supposer que les données X1, · · · , Xn prennent leurs valeurs dans un espace métrique (M, d) à
courbure sectionnelle non positive, donc vérifiant la propriété CAT (0) telle qu’introduite à la section 2.2.2.

L’objectif est d’être capable de démontrer, dans ce cadre, le fondement même de la théorie des statistiques
(et des probabilités), à savoir la loi des grands nombres.

4.2.1 Moyenne de Fréchet et moyenne inductive

Rappelons que la loi des grands nombres affirme que, si les données X1, · · · , Xn sont indépendantes et
identiquement distribuées, et si de plus X1 admet un premier moment fini, E[X1] < ∞, alors la moyenne
empirique converge vers la moyenne théorique :

1

n

n∑
i=1

Xi −→
n→∞

E[X1],

où évidemment le mode de convergence4 reste à préciser.

Ici, dans le cadre où X1, · · · , Xn ∈ M, la première difficulté est que la moyenne empirique n’est pas définie
: en effet, on n’est plus dans le cadre d’un espace linéaire, et il n’a donc plus de sens de prendre une somme !

Il va donc falloir redéfinir la notion de moyenne, de façon à ce que la moyenne de points dans M soit un
point de M.

Étant donné que les Xi sont souvent obtenus comme des vecteurs de RD ⊃ M, on pourrait vouloir
simplement calculer la moyenne dans RD : il s’agit du point de vue extrinsèque. Cependant, cela a pour
inconvénient que la moyenne de points de M ne sera pas forcément un point de M, ce qui est gênant, car
le fait que les points soient dans M est une information très importante que l’on ne veut pas perdre. En
particulier, la notion de moyenne encode l’idée qu’elle doit être représentative des données. Si on a une
moyenne qui perd l’information d’être dans M, cela contredit complètement cette idée. Pour le dire de façon
plus concrète : si les données sont des images de chats, et que l’on considère M comme la variété des images
de chats, alors il n’aurait pas de sens de dire que la moyenne de ces images est une image qui n’est pas un
chat (pas dans M).

Afin de donner du sens à la notion de moyenne de n points x1, · · · , xn dans un espace métrique (M, d),
on cherche une formulation de la moyenne dans Rd qui ne fasse pas intervenir la notion de linéarité. Ainsi,

3Qui, évidemment, dans la pratique, ne seront que approximées.
4En probabilité, presque sûrement, ...
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la définition sera bien une extension de la moyenne usuelle. Pour cela, on se souvient que la moyenne est le
minimiseur du problème des moindres carrés :

1

n

n∑
i=1

xi = argmin
p∈Rd

1

n

n∑
i=1

d(p, xi)
2.

Exercice : Redémontrer cette identité.

Le problème des moindres carrés ne fait intervenir que la notion de distance ; il a donc du sens dans
n’importe quel espace métrique général. C’est ce que l’on appelle une moyenne de Fréchet.

Définition 4.2.1 (Moyenne de Fréchet). Soit (M, d) un espace métrique. On définit :

• L’ensemble des moyennes de Fréchet de n points x1, · · · , xn ∈ M comme étant l’ensemble

argmin
p∈M

1

n

n∑
i=1

d(p, xi)
2.

• L’ensemble des moyennes de Fréchet d’une mesure de probabilité µ sur M comme étant l’ensemble

argmin
p∈M

E
[
d(p,X)2

]
, X ∼ µ.

Il s’agit bien d’un ensemble : en effet, il peut y avoir plusieurs moyennes de Fréchet. Par exemple, sur la
sphère S2, tous les points de l’équateur sont des moyennes de Fréchet des pôles sud et nord.

Si l’on est sur un espace non compact, il peut évidemment y avoir des mesures de probabilité qui
n’admettent pas de moyenne : c’est déjà le cas dans R avec la loi de Cauchy. Pour un espace métrique
général, cela peut également être le cas pour la moyenne entre deux points si l’espace possède des ”trous”.
Par exemple, si l’on considère R \ {0} muni de la distance usuelle, alors les points −1 et +1 n’ont pas de
moyenne, car la fonctionnelle de Fréchet admet un infimum non atteint (atteint en 0 /∈ R \ {0}).

Dans le cas d’un espace géodésique et complet, le problème admet toujours au moins un minimiseur.

Un autre moyen de définir la moyenne de n points dans un espace géodésique consiste à remarquer
l’identité suivante dans Rd :

1

n

n∑
i=1

xi =

(
1− 1

n

)
1

n− 1

n−1∑
i=1

xi +
1

n
xn.

Si l’on pose Sn = 1
n

∑n
i=1 xi, l’identité se réécrit

Sn =

(
1− 1

n

)
Sn−1 +

1

n
xn.

Or, la fonction t ∈ [0, 1] 7→ (1− t)x+ ty est exactement le segment de droite reliant x à y. Par conséquent,
l’identité précédente signifie que Sn est le point situé à distance 1/n de Sn−1 sur le segment reliant Sn−1 à
xn. Cette formulation ne fait intervenir que la notion de géodésique (segment de droite dans le cas euclidien)
et peut donc être généralisée aux espaces métriques généraux.

Définition 4.2.2 (Moyenne inductive). Soit (M, d) un espace géodésique tel que, entre tout point x et y, il
existe une unique géodésique γx,y : [0, 1] → M avec γx,y(0) = x et γx,y(1) = y. Soient x1, · · · , xn ∈ M. On
définit leur moyenne inductive Sn de façon récurrente :

• S1 = x1,

• Sn = γSn−1,xn

(
1
n

)
.

Exercice : Montrer que la moyenne inductive dépend de l’ordre des données xi. En déduire qu’elle ne
cöıncide pas nécessairement avec la moyenne de Fréchet.
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4.2.2 Loi des grands nombres pour les espaces CAT (0)

Maintenant que l’on dispose de notions de moyenne, on peut formuler une loi des grands nombres, et l’objectif
sera de la démontrer dans le cas d’un espace vérifiant la propriété CAT (0). On va ici la démontrer pour la
moyenne inductive, mais le résultat est également vrai pour la moyenne de Fréchet.

Théorème 4.2.3. Soit (M, d) un espace CAT (0) et X1, · · · , Xn des variables i.i.d. de loi µ admettant une
unique moyenne de Fréchet m. Soit Sn la moyenne inductive. Alors on a

E
[
d(m,Sn)

2
]
≤ 1

n
E
[
d(m,X1)

2
]
.

En particulier, la moyenne inductive Sn converge dans L2 vers la moyenne théorique de Fréchet m.

Avant de passer à la preuve, on a besoin de démontrer l’unicité de la moyenne de Fréchet dans les espaces
CAT (0), ainsi que l’inégalité de la variance.

Lemme 4.2.4. [Unicité de la moyenne de Fréchet en CAT (0)] Soit (M, d) un espace CAT (0) et X une
variable aléatoire de loi µ. On suppose que pour un certain x0 ∈ M, on ait E[d(x0, X)] <∞. Alors X admet
une unique moyenne de Fréchet.

Proof. On suit la preuve de Sturm [18, Prop. 4.3]. La première remarque est que la définition de la moyenne
de Fréchet fait intervenir le carré de la distance (norme L2), alors que l’hypothèse porte sur la distance
(norme L1). On commence donc par modifier la fonctionnelle objectif en observant que les minimiseurs de

z 7→ E[d(z,X)2]

sont les mêmes (quand ils existent) que ceux de

Fy(z) := E[d(z,X)2 − d(y,X)2],

où y ∈ M est fixé. En effet, Fy(z)− Fy′(z) = E[d(y′, X)2 − d(y,X)2] ne dépend pas de z.
On montre alors que Fy est fortement convexe et continue, ce qui, d’après l’analyse convexe classique,

implique existence et unicité du minimiseur.
Premièrement, Fy est continue car

|Fy(z)− Fy(z
′)| ≤ E|d(z,X)2 − d(z′, X)2|.

Deuxièmement, grâce à la forte convexité géodésique de z 7→ d(z, x)2 (voir Définition 2.2.6), pour z0, z1 ∈
M et γ : [0, 1] → M la géodésique les reliant, on a

Fy(γ(t)) = E[d(γ(t), X)2 − d(y,X)2]

≤ (1− t)E[d(γ(0), X)2 − d(y,X)2] + tE[d(γ(1), X)2 − d(y,X)2]− t(1− t)d(z0, z1)
2

= (1− t)Fy(γ(0)) + tFy(γ(1))− t(1− t)d(z0, z1)
2,

ce qui établit la forte convexité et termine la preuve.

Exercice : Montrer que si pour un certain x0 ∈ M, E[d(x0, X)] < ∞, alors pour tout x ∈ M,
E[d(x,X)] <∞.

Lemme 4.2.5. [Inégalité de la variance] Soit (M, d) un espace CAT (0) et X une variable aléatoire de loi
µ. On note m ∈ M sa moyenne de Fréchet. Alors, pour tout z ∈ M,

d(z,m)2 ≤ E[d(z,X)2 − d(m,X)2].

Proof. On suit la preuve de Sturm [18, Prop. 4.4]. Pour y = m, la fonctionnelle

Fm(z) := E[d(z,X)2 − d(m,X)2]
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est fortement convexe le long de la géodésique γ : [0, 1] → M reliant m à z, donnant

Fm(γ(t)) ≤ (1− t)Fm(γ(0)) + tFm(γ(1))− t(1− t)d(m, z)2.

Or, Fm(γ(0)) = 0 et Fm(γ(1)) = E[d(z,X)2 − d(m,X)2]. Ainsi,

0 ≤ tE[d(z,X)2 − d(m,X)2]− t(1− t)d(m, z)2.

En divisant par t et laissant t→ 0, on obtient l’inégalité de la variance.

Exercice : Montrer que dans Rd, l’inégalité de la variance est vraie et devient une égalité. Cela est-il
cohérent avec la notion d’espace CAT (0) ?

Preuve du théorème 4.2.3. On suit la preuve de Sturm [18, Théorème 4.7]. On note

σ2 := E[d(m,X1)
2].

La preuve se fait par récurrence sur n ≥ 1. Pour n = 1, l’inégalité est une égalité. Supposons qu’elle soit
vraie pour n et montrons-la pour n+ 1 :

E[d(m,Sn+1)
2] = E

[
d(m, γSn,Xn+1

( 1
n+1 ))

2
]

≤ n

n+ 1
E[d(m,Sn)2] +

1

n+ 1
E[d(m,Xn+1)

2]− n

(n+ 1)2
E[d(Xn+1, Sn)

2]

≤ n

n+ 1
E[d(m,Sn)2] +

1

n+ 1
E[d(m,Xn+1)

2]− n

(n+ 1)2

(
E[d(m,Sn)2] + E[d(m,Xn+1)

2]
)

=

(
n

n+ 1
− n

(n+ 1)2

)
E[d(m,Sn)2] +

(
1

n+ 1
− n

(n+ 1)2

)
E[d(m,X1)

2]

=

(
n

n+ 1

)2

E[d(m,Sn)2] +
1

(n+ 1)2
E[d(m,X1)

2]

≤ 1

n+ 1
E[d(m,X1)

2],

où la première inégalité provient de la forte convexité en CAT (0), la seconde de l’inégalité de la variance
(Lemme 4.2.5) et la dernière de l’hypothèse de récurrence.

4.2.3 Normalité asymptotique de la moyenne de Fréchet empirique, ou BP-TCL

Le terme de BP-TCL vient des auteurs Bhattacharya et Patrangenaru, qui ont largement contribué à développer
ces résultats [5].

À la section précédente, on a vu la notion de loi des grands nombres pour les espaces métriques, et en
particulier on a prouvé une loi des grands nombres L2 pour la moyenne inductive dans les espaces CAT (0).

L’étape suivante dans la théorie des probabilités après la loi des grands nombres est évidemment le
théorème central limite (TCL). En statistique, la loi des grands nombres correspond à établir la consistance
de l’estimateur de la moyenne, tandis que le TCL correspond à la normalité asymptotique de cet estimateur.

La question est donc : peut-on établir un TCL, c’est-à-dire une normalité asymptotique, dans le cadre
qui nous occupe ? Dans cette section, on va esquisser des arguments en faveur d’une réponse positive pour
la moyenne empirique de Fréchet dans le cadre d’une variété riemannienne.

Soit (M, g) une variété riemannienne, et X1, · · · , Xn des variables aléatoires i.i.d. à valeurs dans M, de
loi µ. On suppose que µ admet une unique moyenne de Fréchet m ∈ M.

Soit Sn la5 moyenne de Fréchet empirique des données X1, · · · , Xn. La loi des grands nombres pour les
moyennes de Fréchet dit que Sn converge6 vers la moyenne théorique m. Le but du TCL est d’étudier l’ordre

5sous de bonnes hypothèses, elle est unique
6p.s., en probabilité ou en L2
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des fluctuations ainsi que leur forme7 entre Sn et m. Le problème est que la fluctuation Sn −m n’a pas de
sens directement dans M ; on doit donc passer en coordonnées pour écrire ces fluctuations.

On se place donc dans un voisinage V ⊂ M de m, et on considère les coordonnées normales centrées en m
(voir Section 2.1.3). On a ainsi l’application exponentielle définie sur un ouvert U contenant zéro de l’espace
tangent TmM ≈ Rd en m :

expm : U ⊂ TmM → V ⊂ M,

et sa réciproque, appelée logarithme au point m :

Logm : V ⊂ M → U ⊂ TmM,

qui associe à un point de la variété un vecteur de l’espace tangent. C’est donc le logarithme qui nous permet
de remonter les points sur l’espace tangent, et l’on étudie ainsi les fluctuations

Logm(Sn)− Logm(m) = Logm(Sn) ∈ Tm ≈ Rd.

Une fois cela écrit en coordonnées, la moyenne de Fréchet devient un m-estimateur classique, et sa
normalité asymptotique se déduit de l’analyse usuelle des M -estimateurs.

Soit

Fn(z) =
1

n

n∑
i=1

d(p,Xi)
2

la fonctionnelle empirique, dont Sn est le minimiseur, et

F (z) = E[d(p,X1)
2]

la fonctionnelle de Fréchet, dont m est le minimiseur.
Dans la carte exponentielle, on écrit le développement de Taylor de ∇Fn au voisinage de m, en notant

S̃n := Logm(Sn) et m̃ := Logm(m)8 :

∇Fn(Sn) = ∇Fn(m) + (S̃n − m̃)∇2Fn(m) + Reste.

Comme Sn est minimiseur, on obtient :

0 =
1

n

n∑
i=1

∇d(m,Xi)
2 + (S̃n − m̃)

1

n

n∑
i=1

∇2d(m,Xi)
2 +Reste.

En multipliant par
√
n :

0 =
1√
n

n∑
i=1

∇d(m,Xi)
2 +

(√
n(S̃n − m̃)

) 1

n

n∑
i=1

∇2d(m,Xi)
2 +Reste.

L’idée est que la loi des grands nombres usuelle9 assure la convergence presque sûre de

1

n

n∑
i=1

∇2d(m,Xi)
2 → E[∇2d(m,X1)

2],

et que les hypothèses géométriques (bornitude des courbures sectionnelles) permettent de contrôler le reste,
qui converge vers zéro en probabilité.

On en déduit donc le BP-TCL :
√
n(S̃n − m̃)⇀ N

(
0,Λ−1C(Λt)−1

)
,

avec C la matrice de covariance de ∇d(m,X1)
2 et Λ = E[∇2d(m,X1)

2].
Notons que seule la matrice C encode de l’information sur la loi µ, tandis que Λ encode uniquement la

géométrie de la variété. Dans le cas euclidien, la Hessienne de la distance au carré est constante, donc seul
le terme de covariance apparâıt, conformément au TCL classique.

7Gaussienne
8On a bien sûr m̃ = 0, mais l’écrire facilite le lien avec les formules de Taylor en cadre euclidien
9Tout est écrit en coordonnées, donc on est dans Rd
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4.3 Illustration : barycentres de Wasserstein

Dans cette section, l’objectif est d’être capable de faire des moyennes d’images.

Figure 4.1: Illustration provenant de [9]

Une image est représentée comme un tableau de nombres, les pixels, codant les niveaux de gris. C’est
donc un vecteur de RD avec D le nombre de pixels.

Une première approche très näıve consisterait à faire la moyenne linéaire dans RD, ce qui revient à
superposer les images. Cette méthode ne fonctionne pas correctement (voir figure ci-dessus).

Une approche plus fructueuse est la suivante : une image peut être représentée comme une mesure de
probabilité.

Exercice : Une image est une fonction

I : {1, · · · , n} × {1, · · · ,m} → R+,

où I(i, j) représente l’intensité de niveau de gris10 du pixel en position (i, j). Expliquez comment on peut
représenter cela de façon équivalente sous forme d’une mesure de probabilité.

On peut alors définir la moyenne d’images comme une moyenne de Fréchet pour une certaine distance
bien choisie sur l’espace des mesures de probabilité. En pratique, la distance appropriée est la distance de
Wasserstein.

Étant données µ et ν, deux lois de probabilité sur un espace métrique (M, d), leur distance de Wasser-
stein est définie comme suit. On prend X ∼ µ et Y ∼ ν deux variables aléatoires, non nécessairement
indépendantes. Le couple (X,Y ) est appelé couplage de µ et ν11. La distance de Wasserstein est alors
l’infimum sur tous les couplages :

W2(µ, ν) :=
√

inf
X∼µ, Y∼ν

E[d(X,Y )2].

(Il s’agit ici de la distance W2, mais on peut définir de façon similaire Wp pour tout p ≥ 1.)

10Dans le cas du système de couleur RGB, on a trois fonctions pour chaque niveau d’intensité de Rouge, Vert et Bleu.
11Il existe toujours au moins un couplage, par exemple le couplage trivial où X et Y sont indépendants.



52 CHAPTER 4. ESTIMATION STATISTIQUE EN CONTEXTE GÉOMÉTRIQUE

Exercice : Montrer que W2 est bien une distance.

On définit alors la moyenne entre des images comme la moyenne de Fréchet pour la distance W2 entre
leur représentation sous forme de probabilité.

Si µ1, · · · , µn sont des lois de probabilité et λ1, · · · , λn des poids tels que λ1 + · · ·+λn = 1, leur moyenne
de Wasserstein est définie comme la moyenne de Fréchet :

argmin
p∈M

n∑
i=1

λiW2(p, µi)
2.

On termine cette section par quelques illustrations comparant la moyenne näıve et la moyenne de Wasser-
stein.

En figure 4.1, la moyenne avec des poids uniformes de quatre dessins de papillons est représentée. On
voit que la moyenne euclidienne n’est qu’une superposition, qui ne ressemble donc plus à un papillon, tandis
que la moyenne de Wasserstein, bien que légèrement floue, capture réellement l’idée des images dont elle est
la moyenne : autrement dit, cela reste un papillon.

En figure 4.2, on considère des images des lettres A, B, C et D, et on fait des moyennes de Wasserstein
en faisant varier les poids par pas de 1/4. Dans chaque coin, on met une masse de 1 pour une image et on
retrouve donc la lettre correspondante, tandis que pour l’image centrale, on met des poids uniformes égaux
à 1/4. Le point central représente donc bien la moyenne des quatre lettres. On remarquera qu’en faisant
varier les poids, on obtient des déformations continues des images.

Figure 4.2: Source GeomLoss documentation (kernel-operations.io) [11]
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